Crippled Hepatocarcinogenesis Inhibition of Quercetin in Glycolysis Pathway with Hepatic Farnesoid X Receptor Deficiency.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current pharmaceutical design Pub Date : 2025-02-04 DOI:10.2174/0113816128342642250111055339
Wusheng Zhong, Tao Chen, Ling Chen, Yaqi Xing, Haorui Lin, Shuli Xie, Mateen Nawaz, Danmei Huang, Zhanqin Huang, Jun Lu, Zhiming Chen, Yongdong Niu
{"title":"Crippled Hepatocarcinogenesis Inhibition of Quercetin in Glycolysis Pathway with Hepatic Farnesoid X Receptor Deficiency.","authors":"Wusheng Zhong, Tao Chen, Ling Chen, Yaqi Xing, Haorui Lin, Shuli Xie, Mateen Nawaz, Danmei Huang, Zhanqin Huang, Jun Lu, Zhiming Chen, Yongdong Niu","doi":"10.2174/0113816128342642250111055339","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Quercetin, a bioactive flavonoid extracted from traditional Chinese medicine, has antihepatocellular carcinoma effects. Farnesoid X receptor (FXR), a nuclear receptor highly expressed in the liver, plays important roles in maintaining hepatic glucose homeostasis, anti-inflammation, liver regeneration, and anti-cancer properties. Whether quercetin regulates the glycolysis/glycolysis pathway through FXR signaling remains unknown.</p><p><strong>Methods: </strong>KEGG Enrichment, GO Enrichment, Protein-Protein Interaction (PPI) Network, Molecular Docking, and RNA-Seq Analysis (Swiss Target Prediction, GeneCard databases, Kaplan-Meier Plotter, etc). Cell activity, cell proliferation, and cell cycles were separately analyzed by CCK-8 assay, clone formation assay, and flow cytometry. QRT-PCR determined the mRNA levels of related genes in response to quercetin. HPLCMS/ MSHPLC-MS/MS determined the metabolite profiles. FXR deficiency Hep3B cells were used for discriminating the quercetin's effects with or without FXR.</p><p><strong>Results: </strong>Quercetin-related genes were significantly correlated with FXR in hepatocarcinogenesis, especially in glycolysis. The top 30 related genes between FXR, quercetin, and glycolysis were enriched and chosen to further study. Furthermore, the strongest binding energy determined by the molecular docking model of between quercetin and FXR was -6.55 kcal/mol. Quercetin inhibited cell proliferation by the accumulation of Hep3B cells in the S-phase. The differential expressed genes (C-MYC, PCNA, CYCLIN-D1, and P21) associated with glycolysis were observed. Furthermore, quercetin also inhibited the expression of HK2, GAPDH, and LDHA. Meanwhile, the levels of glycolysis/gluconeogenesis-related metabolites were regulated by quercetin.</p><p><strong>Conclusion: </strong>Quercetin makes an essential anti-HCC effect by crippling the glycolysis/gluconeogenesis process via FXR signaling.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128342642250111055339","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Quercetin, a bioactive flavonoid extracted from traditional Chinese medicine, has antihepatocellular carcinoma effects. Farnesoid X receptor (FXR), a nuclear receptor highly expressed in the liver, plays important roles in maintaining hepatic glucose homeostasis, anti-inflammation, liver regeneration, and anti-cancer properties. Whether quercetin regulates the glycolysis/glycolysis pathway through FXR signaling remains unknown.

Methods: KEGG Enrichment, GO Enrichment, Protein-Protein Interaction (PPI) Network, Molecular Docking, and RNA-Seq Analysis (Swiss Target Prediction, GeneCard databases, Kaplan-Meier Plotter, etc). Cell activity, cell proliferation, and cell cycles were separately analyzed by CCK-8 assay, clone formation assay, and flow cytometry. QRT-PCR determined the mRNA levels of related genes in response to quercetin. HPLCMS/ MSHPLC-MS/MS determined the metabolite profiles. FXR deficiency Hep3B cells were used for discriminating the quercetin's effects with or without FXR.

Results: Quercetin-related genes were significantly correlated with FXR in hepatocarcinogenesis, especially in glycolysis. The top 30 related genes between FXR, quercetin, and glycolysis were enriched and chosen to further study. Furthermore, the strongest binding energy determined by the molecular docking model of between quercetin and FXR was -6.55 kcal/mol. Quercetin inhibited cell proliferation by the accumulation of Hep3B cells in the S-phase. The differential expressed genes (C-MYC, PCNA, CYCLIN-D1, and P21) associated with glycolysis were observed. Furthermore, quercetin also inhibited the expression of HK2, GAPDH, and LDHA. Meanwhile, the levels of glycolysis/gluconeogenesis-related metabolites were regulated by quercetin.

Conclusion: Quercetin makes an essential anti-HCC effect by crippling the glycolysis/gluconeogenesis process via FXR signaling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
期刊最新文献
Exploring Latest Expansions in Solid Lipid-based Nanoparticle Technology for Treatment of Cancer. Crippled Hepatocarcinogenesis Inhibition of Quercetin in Glycolysis Pathway with Hepatic Farnesoid X Receptor Deficiency. Efficacy of Roxadustat in Anemia with Chronic Kidney Disease. A Review Unveiling the Ferroptosis-Regulated Cell Signalling Pathways in Breast Cancer to Elucidate Potent Targets for Cancer Management. Revisiting the Role of Long Non-coding RNA PSMA3-AS1 in Human Cancers: Current Evidence and Future Directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1