Enucleated bone marrow-derived mesenchymal stromal cells regulate immune microenvironment and promote testosterone production through efferocytosis.

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Reproductive Biology and Endocrinology Pub Date : 2025-02-06 DOI:10.1186/s12958-025-01352-9
Lu Sun, Jiayu Huang, Xuezi Wang, Peng Huang, Baolin Dong, Zehang Liang, Jiahong Wu, Jiancheng Wang
{"title":"Enucleated bone marrow-derived mesenchymal stromal cells regulate immune microenvironment and promote testosterone production through efferocytosis.","authors":"Lu Sun, Jiayu Huang, Xuezi Wang, Peng Huang, Baolin Dong, Zehang Liang, Jiahong Wu, Jiancheng Wang","doi":"10.1186/s12958-025-01352-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Testosterone deficiency (TD) occurs most frequently in older men and can cause many health problems. Testosterone replacement therapy (TRT) is widely used to treat TD, but this regimen can lead to a series of side effects. Stem cell therapy has been wildly studied in vitro. However, due to the multidirectional differentiation potential and heterogeneity of stem cells, it is difficult to achieve the good efficiency and reproducibility in basic research and clinical applications. This study aims to identify a new strategy for the treatment of TD.</p><p><strong>Methods: </strong>Bone marrow-derived mesenchymal stromal cells (BMSCs) were enucleated by Ficoll density gradient centrifugation. The organelles and cellular functions of enucleated BMSCs were analyzed by immunofluorescence staining and flow cytometry. Extracellular vesicles (EVs) were isolated by ultracentrifugation and characterized. For the animal studies, enucleated BMSCs were labelled with Mitotracker and injected into ethane dimethanesulfone (EDS)-treated rats. Testosterone production and spermatogenesis were detected at different time points through various tests. To determine the mechanism of efferocytosis, we analysed the number of macrophages by immunofluorescence staining and quantitative real-time polymerase chain reaction (qRT-PCR).</p><p><strong>Results: </strong>The injection of enucleated BMSCs (Cargocytes) into the testes of EDS-treated rats restored the levels of serum testosterone, increased the number of Leydig cells (LCs), and improved spermatogenesis. We found that enucleated BMSCs underwent apoptosis earlier than BMSCs did. Subsequently, testicular interstitial macrophages phagocytosed apoptotic enucleated BMSCs through efferocytosis. Efferocytosis promoted macrophage polarization from the M1 to the M2 phenotype, reduced the expression of proinflammatory cytokines, and decreased the levels of inflammation and oxidative stress.</p><p><strong>Conclusions: </strong>In summary, this study pioneered the application of stromal cell enucleation technology to repair tissue damage in the reproductive system, explored the potential of cell burial in the treatment of reproductive system diseases and provided a new approach for the clinical treatment of male infertility.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"23 1","pages":"21"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Biology and Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12958-025-01352-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Testosterone deficiency (TD) occurs most frequently in older men and can cause many health problems. Testosterone replacement therapy (TRT) is widely used to treat TD, but this regimen can lead to a series of side effects. Stem cell therapy has been wildly studied in vitro. However, due to the multidirectional differentiation potential and heterogeneity of stem cells, it is difficult to achieve the good efficiency and reproducibility in basic research and clinical applications. This study aims to identify a new strategy for the treatment of TD.

Methods: Bone marrow-derived mesenchymal stromal cells (BMSCs) were enucleated by Ficoll density gradient centrifugation. The organelles and cellular functions of enucleated BMSCs were analyzed by immunofluorescence staining and flow cytometry. Extracellular vesicles (EVs) were isolated by ultracentrifugation and characterized. For the animal studies, enucleated BMSCs were labelled with Mitotracker and injected into ethane dimethanesulfone (EDS)-treated rats. Testosterone production and spermatogenesis were detected at different time points through various tests. To determine the mechanism of efferocytosis, we analysed the number of macrophages by immunofluorescence staining and quantitative real-time polymerase chain reaction (qRT-PCR).

Results: The injection of enucleated BMSCs (Cargocytes) into the testes of EDS-treated rats restored the levels of serum testosterone, increased the number of Leydig cells (LCs), and improved spermatogenesis. We found that enucleated BMSCs underwent apoptosis earlier than BMSCs did. Subsequently, testicular interstitial macrophages phagocytosed apoptotic enucleated BMSCs through efferocytosis. Efferocytosis promoted macrophage polarization from the M1 to the M2 phenotype, reduced the expression of proinflammatory cytokines, and decreased the levels of inflammation and oxidative stress.

Conclusions: In summary, this study pioneered the application of stromal cell enucleation technology to repair tissue damage in the reproductive system, explored the potential of cell burial in the treatment of reproductive system diseases and provided a new approach for the clinical treatment of male infertility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Reproductive Biology and Endocrinology
Reproductive Biology and Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.30%
发文量
161
审稿时长
4-8 weeks
期刊介绍: Reproductive Biology and Endocrinology publishes and disseminates high-quality results from excellent research in the reproductive sciences. The journal publishes on topics covering gametogenesis, fertilization, early embryonic development, embryo-uterus interaction, reproductive development, pregnancy, uterine biology, endocrinology of reproduction, control of reproduction, reproductive immunology, neuroendocrinology, and veterinary and human reproductive medicine, including all vertebrate species.
期刊最新文献
Comparison of vaginal versus intramuscular progesterone in programmed cycles for frozen-thawed blastocyst transfer in patients with endometriosis. Enucleated bone marrow-derived mesenchymal stromal cells regulate immune microenvironment and promote testosterone production through efferocytosis. Association between sleep during pregnancy and birth outcomes: a prospective cohort study. Cardiovascular disease risk prediction by Framingham risk score in women with polycystic ovary syndrome. Continuous overnight monitoring of body temperature during embryo transfer cycles as a proxy for establishing progesterone fluctuations by comparison with P4 blood progesterone results: a prospective, observational study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1