Zhao Guyu, Yang Xiaoyuan, Shi Jiansen, He Hongdou, Wang Qian
{"title":"A PM2.5 spatiotemporal prediction model based on mixed graph convolutional GRU and self-attention network","authors":"Zhao Guyu, Yang Xiaoyuan, Shi Jiansen, He Hongdou, Wang Qian","doi":"10.1016/j.envpol.2025.125748","DOIUrl":null,"url":null,"abstract":"The increase in atmospheric pollution has made it essential to develop accurate models for predicting pollutant concentrations. The current researches have faced challenges such as the neglect of significant information selection from local and neighboring stations, as well as insufficient attention to long-term historical data patterns. Therefore, this paper proposes a spatiotemporal prediction model called MGCGRU-SAN, which leverages long-term historical data to predict PM<sub>2.5</sub> concentration values across multiple stations and multiple time steps in the future. Firstly, we employ the Mixed Graph Convolutional GRU(MGCGRU) module to capture the spatiotemporal dependencies in short-term historical time series from various stations. Secondly, the long-term PM<sub>2.5</sub> historical time series (e.g. one week) is divided into uniformly sized segments and fed into the Self-Attention Network(SAN) module to capture the long-term potential temporal patterns. These enable the model to not only capture short-term fluctuations, but also identify and track long-term temporal patterns and trends in the prediction process. Finally, we conduct extensive comparative and ablation experiments using historical air pollutant and meteorological data from the Beijing-Tianjin-Hebei region. The experimental results demonstrate that the model, after capturing the long-term latent temporal patterns, achieve improvements of 9.62%, 6.33%, and 4.98% in the RSE, MAE, and RMSE evaluation metrics during multi-step prediction. Overall, the model outperforms the best baseline model by an average of 8.34%, 6.12%,4.06%, and 2.60% in RSE, MAE, RMSE, and Correlation metrics, respectively, showing superior performance in multi-station long-term predictions.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"9 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125748","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The increase in atmospheric pollution has made it essential to develop accurate models for predicting pollutant concentrations. The current researches have faced challenges such as the neglect of significant information selection from local and neighboring stations, as well as insufficient attention to long-term historical data patterns. Therefore, this paper proposes a spatiotemporal prediction model called MGCGRU-SAN, which leverages long-term historical data to predict PM2.5 concentration values across multiple stations and multiple time steps in the future. Firstly, we employ the Mixed Graph Convolutional GRU(MGCGRU) module to capture the spatiotemporal dependencies in short-term historical time series from various stations. Secondly, the long-term PM2.5 historical time series (e.g. one week) is divided into uniformly sized segments and fed into the Self-Attention Network(SAN) module to capture the long-term potential temporal patterns. These enable the model to not only capture short-term fluctuations, but also identify and track long-term temporal patterns and trends in the prediction process. Finally, we conduct extensive comparative and ablation experiments using historical air pollutant and meteorological data from the Beijing-Tianjin-Hebei region. The experimental results demonstrate that the model, after capturing the long-term latent temporal patterns, achieve improvements of 9.62%, 6.33%, and 4.98% in the RSE, MAE, and RMSE evaluation metrics during multi-step prediction. Overall, the model outperforms the best baseline model by an average of 8.34%, 6.12%,4.06%, and 2.60% in RSE, MAE, RMSE, and Correlation metrics, respectively, showing superior performance in multi-station long-term predictions.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.