Interactions between selenium species and pyrogenic carbonaceous materials in water and soil relevant to selenium control and remediation: a molecular-level perspective
{"title":"Interactions between selenium species and pyrogenic carbonaceous materials in water and soil relevant to selenium control and remediation: a molecular-level perspective","authors":"Yi Yang, Mengxue Liu, Joseph J. Pignatello","doi":"10.1016/j.envpol.2025.125831","DOIUrl":null,"url":null,"abstract":"In the environment, selenium (Se) has dual impacts on living organisms, as it is an essential element but high concentrations can be toxic. Current technologies for treating Se in real applications are not cost effective. Pyrogenic carbonaceous materials (PCM) with high surface area and redox properties have been proposed to remove Se. The objective of this review is to evaluate recent developments in fabrication of PCM and functionalized PCM for Se sorption and reduction in environmental remediation, as well as their potential impacts on crop growth. The sorptive removal of Se by PCM relies on the combined effects of electrostatic interactions, steric constraints, and complexation with metal species. The reduction property of PCM facilitates the conversion the ionic Se into solid state. The sorption of Se on PCM can also find applications in crop growth and the inhibition of heavy metal ions. We provide an outlook of terminal treatment of Se on PCM including immobilizing Se as solid species or applying PCM with sorbed Se as micronutrient soil amendment.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"55 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125831","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the environment, selenium (Se) has dual impacts on living organisms, as it is an essential element but high concentrations can be toxic. Current technologies for treating Se in real applications are not cost effective. Pyrogenic carbonaceous materials (PCM) with high surface area and redox properties have been proposed to remove Se. The objective of this review is to evaluate recent developments in fabrication of PCM and functionalized PCM for Se sorption and reduction in environmental remediation, as well as their potential impacts on crop growth. The sorptive removal of Se by PCM relies on the combined effects of electrostatic interactions, steric constraints, and complexation with metal species. The reduction property of PCM facilitates the conversion the ionic Se into solid state. The sorption of Se on PCM can also find applications in crop growth and the inhibition of heavy metal ions. We provide an outlook of terminal treatment of Se on PCM including immobilizing Se as solid species or applying PCM with sorbed Se as micronutrient soil amendment.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.