Chengwei Bao , Yanen Wang , Garth Pearce , Pan Zhao , Minyan Liu , Ray Tahir Mushtaq
{"title":"3D printing of regolith-based epoxy composites with excellent temperature resistance and mechanical strength","authors":"Chengwei Bao , Yanen Wang , Garth Pearce , Pan Zhao , Minyan Liu , Ray Tahir Mushtaq","doi":"10.1016/j.actaastro.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Preparing regolith-based composites for 3D printing is crucial in lunar base construction, leveraging cost-effective and mechanically favorable materials for lunar construction by utilizing lunar regolith as the reinforcing phase. This research focuses on developing lunar regolith simulant as a matrix for 3D printing, which is crucial for in-situ resource utilization on the Moon. Resin-based composites, well-established in aerospace, are explored for their simple manufacturing and robust properties. The formulation involves simulated regolith-based polymer for direct ink writing printing. Rheological properties, including yield stress and plastic viscosity, are characterized across various cementite-sand ratios and printing temperatures. The relationship between extrudability, the time interval of the printing material and its rheological attributes is investigated. Quantitative assessment of material buildability employs three-dimensional scanning of the printed parts. Freeze-thaw cycle tests explore its temperature resilience. The influence of varying the printing infill rate on printing efficiency and the performance of the printed parts was assessed. It was found that modulating the printing infill rate affects the efficiency and performance of parts, with a 1:4 cementite-sand ratio and a 40 <span><math><mrow><mo>°C</mo></mrow></math></span> print temperature demonstrating optimal printing workability. These findings offer an efficient scheme for the automated production of regolith-based epoxy composites with precise structural, temperature-resistant, and favorable mechanical properties.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"229 ","pages":"Pages 787-803"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576525000748","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Preparing regolith-based composites for 3D printing is crucial in lunar base construction, leveraging cost-effective and mechanically favorable materials for lunar construction by utilizing lunar regolith as the reinforcing phase. This research focuses on developing lunar regolith simulant as a matrix for 3D printing, which is crucial for in-situ resource utilization on the Moon. Resin-based composites, well-established in aerospace, are explored for their simple manufacturing and robust properties. The formulation involves simulated regolith-based polymer for direct ink writing printing. Rheological properties, including yield stress and plastic viscosity, are characterized across various cementite-sand ratios and printing temperatures. The relationship between extrudability, the time interval of the printing material and its rheological attributes is investigated. Quantitative assessment of material buildability employs three-dimensional scanning of the printed parts. Freeze-thaw cycle tests explore its temperature resilience. The influence of varying the printing infill rate on printing efficiency and the performance of the printed parts was assessed. It was found that modulating the printing infill rate affects the efficiency and performance of parts, with a 1:4 cementite-sand ratio and a 40 print temperature demonstrating optimal printing workability. These findings offer an efficient scheme for the automated production of regolith-based epoxy composites with precise structural, temperature-resistant, and favorable mechanical properties.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.