Yilu Zhao, Zhao Fu, Eric J Barnett, Ning Wang, Kangfuxi Zhang, Xuping Gao, Xiangyu Zheng, Junbin Tian, Hui Zhang, XueTong Ding, Shaoxian Li, Shuyu Li, Qingjiu Cao, Suhua Chang, Yufeng Wang, Stephen V Faraone, Li Yang
{"title":"Genome data based deep learning identified new genes predicting pharmacological treatment response of attention deficit hyperactivity disorder.","authors":"Yilu Zhao, Zhao Fu, Eric J Barnett, Ning Wang, Kangfuxi Zhang, Xuping Gao, Xiangyu Zheng, Junbin Tian, Hui Zhang, XueTong Ding, Shaoxian Li, Shuyu Li, Qingjiu Cao, Suhua Chang, Yufeng Wang, Stephen V Faraone, Li Yang","doi":"10.1038/s41398-025-03250-5","DOIUrl":null,"url":null,"abstract":"<p><p>Although the efficacy of pharmacy in the treatment of attention deficit/hyperactivity disorder (ADHD) has been well established, the lack of predictors of treatment response poses great challenges for personalized treatment. The current study employed a comprehensive approach, combining genome-wide association analyses (GWAS) and deep learning (DL) methods, to elucidate the genetic underpinnings of pharmacological treatment response in ADHD. Based on genotype data of medication-naïve patients with ADHD who received pharmacological treatments for 12 weeks, the current study performed GWAS using the percentage changes in ADHD-RS score as phenotype. Then, DL models were constructed to predict percentage changes in symptom scores using genetic variants selected based on four different genome-wide P thresholds (E-02, E-03, E-04, E-05) as inputs. The current GWAS results identified two significant loci (rs10880574, P = 2.39E-09; rs2000900, P = 3.31E-09) which implicated two genes, TMEM117 and MYO5B, that were primarily associated with both brain- and gut-related disorders. The convolutional neural network (CNN) model, using variants with genome-wide P values less than E-02 (5516 SNPs), demonstrated the best performance with mean squared error (MSE) equals 0.012 (Accuracy = 0.83; Sensitivity = 0.90; Specificity = 0.75) in the validation dataset, 0.081 in an independent test dataset (Acc = 0.61, Sensitivity = 0.81; Specificity = 0.26). Notably, the variant that contributed most to the CNN model was NKAIN2, an ADHD-related gene, which is also associated with metabolic processes. To conclude, the integration of GWAS and DL methods revealed new genes contribute to ADHD pharmacological treatment responses, and underscored the interplay between neural systems and metabolic processes, potentially providing critical insights into precision treatment. Furthermore, our CNN model exhibited good performance in an independent dataset, encouraged future studies and implied potential clinical applications.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"46"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03250-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Although the efficacy of pharmacy in the treatment of attention deficit/hyperactivity disorder (ADHD) has been well established, the lack of predictors of treatment response poses great challenges for personalized treatment. The current study employed a comprehensive approach, combining genome-wide association analyses (GWAS) and deep learning (DL) methods, to elucidate the genetic underpinnings of pharmacological treatment response in ADHD. Based on genotype data of medication-naïve patients with ADHD who received pharmacological treatments for 12 weeks, the current study performed GWAS using the percentage changes in ADHD-RS score as phenotype. Then, DL models were constructed to predict percentage changes in symptom scores using genetic variants selected based on four different genome-wide P thresholds (E-02, E-03, E-04, E-05) as inputs. The current GWAS results identified two significant loci (rs10880574, P = 2.39E-09; rs2000900, P = 3.31E-09) which implicated two genes, TMEM117 and MYO5B, that were primarily associated with both brain- and gut-related disorders. The convolutional neural network (CNN) model, using variants with genome-wide P values less than E-02 (5516 SNPs), demonstrated the best performance with mean squared error (MSE) equals 0.012 (Accuracy = 0.83; Sensitivity = 0.90; Specificity = 0.75) in the validation dataset, 0.081 in an independent test dataset (Acc = 0.61, Sensitivity = 0.81; Specificity = 0.26). Notably, the variant that contributed most to the CNN model was NKAIN2, an ADHD-related gene, which is also associated with metabolic processes. To conclude, the integration of GWAS and DL methods revealed new genes contribute to ADHD pharmacological treatment responses, and underscored the interplay between neural systems and metabolic processes, potentially providing critical insights into precision treatment. Furthermore, our CNN model exhibited good performance in an independent dataset, encouraged future studies and implied potential clinical applications.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.