Sheng Hu, Yanming Wang, Xiaoxiao Wang, Yang Ji, Chuanfu Li, Bensheng Qiu
{"title":"Transcriptomic profiles link corticostriatal microarchitecture to genetics of neurodevelopment and neuropsychiatric risks.","authors":"Sheng Hu, Yanming Wang, Xiaoxiao Wang, Yang Ji, Chuanfu Li, Bensheng Qiu","doi":"10.1038/s41398-025-03260-3","DOIUrl":null,"url":null,"abstract":"<p><p>Many studies on macroscale organization have focused on only the cerebral cortex or striatum, leaving a large gap in the microstructural gradient of corticostriatal covariance. Here, we partitioned the striatum into seven distinct parcels and computed the microstructural covariance between each parcel and the cerebral cortex using T1-weighted/T2-weighted mapping. We found that corticostriatal microstructural covariance exhibited a microstructural gradient along the anterior-posterior axis of the striatum. The patterns of corticostriatal microstructural covariance are linked to geodesic distance and cell type-specific gene expression profiles, revealing a gradually attenuated relationship along the anterior-posterior axis of the striatum. Linking gene expression profile to corticostriatal microstructural patterns showed that the transcriptional variations in cell type-specific genes are different between the anterior and posterior striatum and suggested that anterior striatum are more enriched in psychiatric disorders. Moreover, at the genetic level, the corticostriatal microarchitecture showed a spatiotemporal trait during neurodevelopment. Finally, we identified the neural circuits from limbic and medial frontal cortex to striatum that contributes to the common neuropsychiatric disorders. Collectively, our findings reveal spatially covarying of transcriptional specializations with microarchitecture of corticostriatal covariance, highlighting the mechanisms underlying that neurodevelopmental corticostriatal circuits may be involved in neuropsychiatric disorders.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"48"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03260-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Many studies on macroscale organization have focused on only the cerebral cortex or striatum, leaving a large gap in the microstructural gradient of corticostriatal covariance. Here, we partitioned the striatum into seven distinct parcels and computed the microstructural covariance between each parcel and the cerebral cortex using T1-weighted/T2-weighted mapping. We found that corticostriatal microstructural covariance exhibited a microstructural gradient along the anterior-posterior axis of the striatum. The patterns of corticostriatal microstructural covariance are linked to geodesic distance and cell type-specific gene expression profiles, revealing a gradually attenuated relationship along the anterior-posterior axis of the striatum. Linking gene expression profile to corticostriatal microstructural patterns showed that the transcriptional variations in cell type-specific genes are different between the anterior and posterior striatum and suggested that anterior striatum are more enriched in psychiatric disorders. Moreover, at the genetic level, the corticostriatal microarchitecture showed a spatiotemporal trait during neurodevelopment. Finally, we identified the neural circuits from limbic and medial frontal cortex to striatum that contributes to the common neuropsychiatric disorders. Collectively, our findings reveal spatially covarying of transcriptional specializations with microarchitecture of corticostriatal covariance, highlighting the mechanisms underlying that neurodevelopmental corticostriatal circuits may be involved in neuropsychiatric disorders.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.