{"title":"Blue LED photolytic method for the synthesis of 1,4-dihydropyridine derivatives from benzo [b]thiophene-2-carbaldehyde","authors":"Anushka Servesh , Sankar Ganesh Ramaraj , J. Rajprasad , Sumaiya Tabassum , Santhosh Govindaraju","doi":"10.1016/j.cep.2025.110205","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a highly efficient and operationally simple protocol for synthesizing 1,4-dihydropyridine derivatives. The protocol uses an inexpensive and readily available photocatalyst Mn<sub>2</sub>(CO)<sub>10</sub>, which plays a crucial role in the single-pot, four-component reaction involving benzo [<em>b</em>]thiophene-2-carbaldehyde, malononitrile, dialkyl acetylene dicarboxylate, and anilines in a blue LED (400–500 nm) photocatalytic technique. The reaction conditions include the use of blue LEDs, a lower catalyst load, and green solvents like dimethyl sulfoxide (DMSO) and water in a 1:1 ratio. The multicomponent photocatalytic approach negates the use of expensive catalysts and the necessity of multi-step routes, in addition to providing better atom economy and an easy work-up process, and it is environmentally benign. The derivatives were effectively synthesized in higher yields and characterized using <sup>1</sup>H NMR, <sup>13</sup>C NMR, and ESI-MS. The obtained 1,4 dihydropyridines also have tremendous capability for biological and pharmacological activities, opening exciting possibilities for future research and applications.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"209 ","pages":"Article 110205"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125000546","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a highly efficient and operationally simple protocol for synthesizing 1,4-dihydropyridine derivatives. The protocol uses an inexpensive and readily available photocatalyst Mn2(CO)10, which plays a crucial role in the single-pot, four-component reaction involving benzo [b]thiophene-2-carbaldehyde, malononitrile, dialkyl acetylene dicarboxylate, and anilines in a blue LED (400–500 nm) photocatalytic technique. The reaction conditions include the use of blue LEDs, a lower catalyst load, and green solvents like dimethyl sulfoxide (DMSO) and water in a 1:1 ratio. The multicomponent photocatalytic approach negates the use of expensive catalysts and the necessity of multi-step routes, in addition to providing better atom economy and an easy work-up process, and it is environmentally benign. The derivatives were effectively synthesized in higher yields and characterized using 1H NMR, 13C NMR, and ESI-MS. The obtained 1,4 dihydropyridines also have tremendous capability for biological and pharmacological activities, opening exciting possibilities for future research and applications.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.