Yang Qiu , Honghui Li , Kun Yu , Jiali Chen , Li Qi , Yinghua Zhao , Liming Nie
{"title":"Collagen fibers quantification for liver fibrosis assessment using linear dichroism photoacoustic microscopy","authors":"Yang Qiu , Honghui Li , Kun Yu , Jiali Chen , Li Qi , Yinghua Zhao , Liming Nie","doi":"10.1016/j.pacs.2025.100694","DOIUrl":null,"url":null,"abstract":"<div><div>Liver fibrosis represents a progressive pathological condition that can culminate in severe hepatic dysfunction, potentially advancing to cirrhosis and liver cancer. The extent of liver fibrosis is intrinsically associated with the quantity of collagen fibers. Although liver biopsy and ultrasound imaging are standard diagnostic tools, their application is constrained by risks of significant complications and variability in different investigators, respectively. In this study, we utilized linear dichroism photoacoustic microscopy (LDPAM) to visualize and quantify collagen fibers, which exhibit specific absorption of polarized light, subsequently calculating a collagen fibers degree of dichroism (CDOD) score. We obtained high-resolution images of liver structures, with an emphasis on collagen fibers within the hepatic tissue. Using the CDOD score, we categorized liver fibrosis into three distinct stages: normal, early, and advanced. For validation purposes, collagen fibers were visualized with Sirius-red staining and quantitatively assessed through the collagen proportional area (CPA) score. Our results demonstrated a significant correlation between the CDOD and CPA scores, with a Pearson coefficient of 0.95. This approach presents a promising and non-invasive method for assessing liver fibrosis by quantifying collagen fibers.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"42 ","pages":"Article 100694"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000138","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Liver fibrosis represents a progressive pathological condition that can culminate in severe hepatic dysfunction, potentially advancing to cirrhosis and liver cancer. The extent of liver fibrosis is intrinsically associated with the quantity of collagen fibers. Although liver biopsy and ultrasound imaging are standard diagnostic tools, their application is constrained by risks of significant complications and variability in different investigators, respectively. In this study, we utilized linear dichroism photoacoustic microscopy (LDPAM) to visualize and quantify collagen fibers, which exhibit specific absorption of polarized light, subsequently calculating a collagen fibers degree of dichroism (CDOD) score. We obtained high-resolution images of liver structures, with an emphasis on collagen fibers within the hepatic tissue. Using the CDOD score, we categorized liver fibrosis into three distinct stages: normal, early, and advanced. For validation purposes, collagen fibers were visualized with Sirius-red staining and quantitatively assessed through the collagen proportional area (CPA) score. Our results demonstrated a significant correlation between the CDOD and CPA scores, with a Pearson coefficient of 0.95. This approach presents a promising and non-invasive method for assessing liver fibrosis by quantifying collagen fibers.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.