Heavy metal enrichment characteristics and synergistic evaluation in soil-crop-human systems of agricultural land with different soil parent materials.
{"title":"Heavy metal enrichment characteristics and synergistic evaluation in soil-crop-human systems of agricultural land with different soil parent materials.","authors":"Jialiang Li, Jierui Dai, Liyuan Yang","doi":"10.1007/s10653-025-02382-3","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal (HM) pollution in agricultural areas seriously threatens food security and ecological health. In this study, based on different soil parent materials, the HMs enrichment in the soil-crop systems of two typical eastern Chinese agricultural lands was compared and analyzed. Multivariate linear stepwise regression analysis, influence index of comprehensive quality and HHRA model were used to understand the bioaccumulation and to evaluate the soil-crop-human system. The study showed that HMs exhibited different enrichment characteristics in the two soil parent material areas. Cd faced a higher risk control rate and was a priority pollutant in the soil environment. The acidification soils in the granitic parent material area led to more widespread Ni pollution in wheat grains. The HM absorption model clarifies that driving factors such as the HM content, physicochemical properties and the distance to the river can well explain the enrichment ability of HMs in wheat grains. The synergistic evaluation revealed that only 13.04% of soil and crops were at a clean level. Soil contamination is more prevalent in the metamorphic rocks area, while crop contamination is more severe in the granitic parent material area. Probabilistic health risk assessment indicated that HMs primarily impact health through the ingestion of contaminated wheat, so residents of the granitic parent material area face a slightly higher HI. This information will be crucial for understanding the translocation and accumulation of HMs within soil-crop-human health systems of agricultural land in different soil parent material areas and for developing effective pollution prevention and control programs.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 3","pages":"71"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02382-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal (HM) pollution in agricultural areas seriously threatens food security and ecological health. In this study, based on different soil parent materials, the HMs enrichment in the soil-crop systems of two typical eastern Chinese agricultural lands was compared and analyzed. Multivariate linear stepwise regression analysis, influence index of comprehensive quality and HHRA model were used to understand the bioaccumulation and to evaluate the soil-crop-human system. The study showed that HMs exhibited different enrichment characteristics in the two soil parent material areas. Cd faced a higher risk control rate and was a priority pollutant in the soil environment. The acidification soils in the granitic parent material area led to more widespread Ni pollution in wheat grains. The HM absorption model clarifies that driving factors such as the HM content, physicochemical properties and the distance to the river can well explain the enrichment ability of HMs in wheat grains. The synergistic evaluation revealed that only 13.04% of soil and crops were at a clean level. Soil contamination is more prevalent in the metamorphic rocks area, while crop contamination is more severe in the granitic parent material area. Probabilistic health risk assessment indicated that HMs primarily impact health through the ingestion of contaminated wheat, so residents of the granitic parent material area face a slightly higher HI. This information will be crucial for understanding the translocation and accumulation of HMs within soil-crop-human health systems of agricultural land in different soil parent material areas and for developing effective pollution prevention and control programs.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.