Heavy metal enrichment characteristics and synergistic evaluation in soil-crop-human systems of agricultural land with different soil parent materials.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2025-02-08 DOI:10.1007/s10653-025-02382-3
Jialiang Li, Jierui Dai, Liyuan Yang
{"title":"Heavy metal enrichment characteristics and synergistic evaluation in soil-crop-human systems of agricultural land with different soil parent materials.","authors":"Jialiang Li, Jierui Dai, Liyuan Yang","doi":"10.1007/s10653-025-02382-3","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal (HM) pollution in agricultural areas seriously threatens food security and ecological health. In this study, based on different soil parent materials, the HMs enrichment in the soil-crop systems of two typical eastern Chinese agricultural lands was compared and analyzed. Multivariate linear stepwise regression analysis, influence index of comprehensive quality and HHRA model were used to understand the bioaccumulation and to evaluate the soil-crop-human system. The study showed that HMs exhibited different enrichment characteristics in the two soil parent material areas. Cd faced a higher risk control rate and was a priority pollutant in the soil environment. The acidification soils in the granitic parent material area led to more widespread Ni pollution in wheat grains. The HM absorption model clarifies that driving factors such as the HM content, physicochemical properties and the distance to the river can well explain the enrichment ability of HMs in wheat grains. The synergistic evaluation revealed that only 13.04% of soil and crops were at a clean level. Soil contamination is more prevalent in the metamorphic rocks area, while crop contamination is more severe in the granitic parent material area. Probabilistic health risk assessment indicated that HMs primarily impact health through the ingestion of contaminated wheat, so residents of the granitic parent material area face a slightly higher HI. This information will be crucial for understanding the translocation and accumulation of HMs within soil-crop-human health systems of agricultural land in different soil parent material areas and for developing effective pollution prevention and control programs.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 3","pages":"71"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02382-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal (HM) pollution in agricultural areas seriously threatens food security and ecological health. In this study, based on different soil parent materials, the HMs enrichment in the soil-crop systems of two typical eastern Chinese agricultural lands was compared and analyzed. Multivariate linear stepwise regression analysis, influence index of comprehensive quality and HHRA model were used to understand the bioaccumulation and to evaluate the soil-crop-human system. The study showed that HMs exhibited different enrichment characteristics in the two soil parent material areas. Cd faced a higher risk control rate and was a priority pollutant in the soil environment. The acidification soils in the granitic parent material area led to more widespread Ni pollution in wheat grains. The HM absorption model clarifies that driving factors such as the HM content, physicochemical properties and the distance to the river can well explain the enrichment ability of HMs in wheat grains. The synergistic evaluation revealed that only 13.04% of soil and crops were at a clean level. Soil contamination is more prevalent in the metamorphic rocks area, while crop contamination is more severe in the granitic parent material area. Probabilistic health risk assessment indicated that HMs primarily impact health through the ingestion of contaminated wheat, so residents of the granitic parent material area face a slightly higher HI. This information will be crucial for understanding the translocation and accumulation of HMs within soil-crop-human health systems of agricultural land in different soil parent material areas and for developing effective pollution prevention and control programs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Balancing application of plant growth-promoting bacteria and biochar in promoting selenium biofortification and remediating combined heavy metal pollution in paddy soil. Synergistic effects of indigenous bacterial consortia on heavy metal tolerance and reduction. Pedogeochemical mobility of metals from fluorescent lamp waste and human health risk assessment. Soil heavy metals assessment of the Zhoukou riparian zone base of Shaying river basin, China: spatial distribution, source analysis and ecological risk. Ensuring food safety by combining phytoremediation and food crop cultivation: a case study in farmlands near a lead-zinc mine in Southwest China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1