{"title":"Dentin sialoprotein acts as an angiogenic factor through association with the membrane receptor endoglin.","authors":"Ximin Xu, Jing Fu, Guobin Yang, Zhi Chen, Shuo Chen, Guohua Yuan","doi":"10.1016/j.jbc.2025.108279","DOIUrl":null,"url":null,"abstract":"<p><p>Dentin sialophosphoprotein (DSPP) is highly expressed by odontoblasts, the cell type responsible for dentin formation. DSPP therefore has been extensively studied as a regulator of dentinogenesis. Besides defective dentinogenesis in teeth, Dspp deficient mice also display reduced blood vessels in the transition zone of femurs. However, the exact role and underlying mechanisms of DSPP in the process of blood vessel formation remain enigmatic. Here, we show that dentin sialoprotein (DSP), the NH<sub>2</sub>-terminal cleavage product of DSPP, promotes the migration and capillary-like structure formation of human umbilical vein endothelial cells (HUVECs) as well as the migration and endothelial differentiation of human dental pulp stem cells (DPSCs). Further experiments demonstrate that endoglin (ENG), a membrane receptor associated with angiogenesis, can be co-immunoprecipitated by DSP. Flow cytometry assays show that HUVECs and DPSCs, two cell types with endogenous ENG expression, display obvious binding signals of supplemented DSP protein, but human embryonic kidney 293T (HEK293T) cells, a cell type without endogenous ENG expression do not. Pretreatment with an anti-ENG antibody or knockdown of ENG inhibits the binding of DSP to DPSCs, while ENG overexpression enhances binding signals of DSP to HEK293T cells. Meanwhile, multiple experiments demonstrate that knockdown of ENG impairs DSP-induced migration and endothelial differentiation of DPSCs. Therefore, ENG is essential for the angiogenic effects of DSP. Moreover, Dspp deficient mice exhibit defective capillary formation in molars, supporting the positive role of DSP in blood vessel development. Collectively, these findings identify that DSP acts as an angiogenic factor through association with ENG.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108279"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108279","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dentin sialophosphoprotein (DSPP) is highly expressed by odontoblasts, the cell type responsible for dentin formation. DSPP therefore has been extensively studied as a regulator of dentinogenesis. Besides defective dentinogenesis in teeth, Dspp deficient mice also display reduced blood vessels in the transition zone of femurs. However, the exact role and underlying mechanisms of DSPP in the process of blood vessel formation remain enigmatic. Here, we show that dentin sialoprotein (DSP), the NH2-terminal cleavage product of DSPP, promotes the migration and capillary-like structure formation of human umbilical vein endothelial cells (HUVECs) as well as the migration and endothelial differentiation of human dental pulp stem cells (DPSCs). Further experiments demonstrate that endoglin (ENG), a membrane receptor associated with angiogenesis, can be co-immunoprecipitated by DSP. Flow cytometry assays show that HUVECs and DPSCs, two cell types with endogenous ENG expression, display obvious binding signals of supplemented DSP protein, but human embryonic kidney 293T (HEK293T) cells, a cell type without endogenous ENG expression do not. Pretreatment with an anti-ENG antibody or knockdown of ENG inhibits the binding of DSP to DPSCs, while ENG overexpression enhances binding signals of DSP to HEK293T cells. Meanwhile, multiple experiments demonstrate that knockdown of ENG impairs DSP-induced migration and endothelial differentiation of DPSCs. Therefore, ENG is essential for the angiogenic effects of DSP. Moreover, Dspp deficient mice exhibit defective capillary formation in molars, supporting the positive role of DSP in blood vessel development. Collectively, these findings identify that DSP acts as an angiogenic factor through association with ENG.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.