Integrating cold hardiness and deacclimation resistance demonstrates a conserved response to chilling accumulation in grapevines.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2025-02-08 DOI:10.1093/jxb/eraf045
Jason P Londo, Al P Kovaleski
{"title":"Integrating cold hardiness and deacclimation resistance demonstrates a conserved response to chilling accumulation in grapevines.","authors":"Jason P Londo, Al P Kovaleski","doi":"10.1093/jxb/eraf045","DOIUrl":null,"url":null,"abstract":"<p><p>To survive the harsh conditions of winter, woody perennial species such as grapevine have adapted to use environmental cues to trigger physiological changes to induce dormancy, acquire cold hardiness, and measure the length of winter to properly time spring budbreak. Human induced climate change disrupts these cues by prolonging warm temperatures in fall, reducing the depth and consistency of midwinter, and triggering early budbreak through false spring events. We evaluated variation in dormant bud cold hardiness and chilling hour requirements of 31 different grapevine varieties over 3 years. Differential thermal analysis was used to track changes in cold hardiness and deacclimation resistance was assessed throughout the season to track dormancy progression. Results demonstrate wide variation in maximum deacclimation rate (1.03 - 2.87 °C/day) among varieties under forcing conditions. Significant correlations were noted between wild species distributions or cultivar provenance with cold hardiness and deacclimation rates, demonstrating the likely climate-adaptive nature of these traits. When integrated with variation in cold hardiness, these rates revealed a relationship between winter cold hardiness, changes in deacclimation rate and budbreak phenology. Standardizing rates among varieties as deacclimation potential demonstrated a conserved response to chilling exposure among varieties that alters our interpretation of the concept of high and low chill varieties and chilling requirement in grapevine.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To survive the harsh conditions of winter, woody perennial species such as grapevine have adapted to use environmental cues to trigger physiological changes to induce dormancy, acquire cold hardiness, and measure the length of winter to properly time spring budbreak. Human induced climate change disrupts these cues by prolonging warm temperatures in fall, reducing the depth and consistency of midwinter, and triggering early budbreak through false spring events. We evaluated variation in dormant bud cold hardiness and chilling hour requirements of 31 different grapevine varieties over 3 years. Differential thermal analysis was used to track changes in cold hardiness and deacclimation resistance was assessed throughout the season to track dormancy progression. Results demonstrate wide variation in maximum deacclimation rate (1.03 - 2.87 °C/day) among varieties under forcing conditions. Significant correlations were noted between wild species distributions or cultivar provenance with cold hardiness and deacclimation rates, demonstrating the likely climate-adaptive nature of these traits. When integrated with variation in cold hardiness, these rates revealed a relationship between winter cold hardiness, changes in deacclimation rate and budbreak phenology. Standardizing rates among varieties as deacclimation potential demonstrated a conserved response to chilling exposure among varieties that alters our interpretation of the concept of high and low chill varieties and chilling requirement in grapevine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
Ethylene signaling is essential for mycorrhiza-induced resistance against chewing herbivores in tomato. Integrating cold hardiness and deacclimation resistance demonstrates a conserved response to chilling accumulation in grapevines. LIPID RICH 1 Modulates Allocation of Carbon between Starch and Triacylglycerol in Arabidopsis Leaves. Lipid transfer protein VAS inhibits the hypersensitive response via reactive oxygen species signaling in Nicotiana benthamiana. Recent advances in UV-B signalling: interaction of proteins with the UVR8 photoreceptor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1