{"title":"Using targeted genome methylation for crop improvement.","authors":"Zhibo Wang, Rebecca S Bart","doi":"10.1093/jxb/eraf131","DOIUrl":null,"url":null,"abstract":"<p><p>Genome editing allows scientists to specifically change the DNA sequence of an organism. This powerful technology now fuels basic biology discovery and tangible crop improvement efforts. There is a less well understood layer of information encoded in genomes, known collectively as 'epigenetics,' that impacts gene expression, without changing the DNA sequence. Epigenetic processes allow organisms to rapidly respond to environmental fluctuation. Like genome editing, recent advances have demonstrated that it is possible to edit the epigenome of a plant and cause heritable phenotypic changes. In this review we aim to specifically consider the unique advantages that targeted epigenome editing might provide over existing biotechnology tools. This review is aimed at a broad audience. We begin with a high-level overview the tools currently available for crop improvement. Next, we present a more detailed overview of the key discoveries that have been made in recent years, primarily using the model system Arabidopsis, new efforts to extend targeted methylation to crop plants, the current status of the technology and the challenges that remain to realize the full potential of targeted epigenome editing. We end with a forward-looking commentary on how epi-alleles might interface with breeding programs across a variety of crops.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf131","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Genome editing allows scientists to specifically change the DNA sequence of an organism. This powerful technology now fuels basic biology discovery and tangible crop improvement efforts. There is a less well understood layer of information encoded in genomes, known collectively as 'epigenetics,' that impacts gene expression, without changing the DNA sequence. Epigenetic processes allow organisms to rapidly respond to environmental fluctuation. Like genome editing, recent advances have demonstrated that it is possible to edit the epigenome of a plant and cause heritable phenotypic changes. In this review we aim to specifically consider the unique advantages that targeted epigenome editing might provide over existing biotechnology tools. This review is aimed at a broad audience. We begin with a high-level overview the tools currently available for crop improvement. Next, we present a more detailed overview of the key discoveries that have been made in recent years, primarily using the model system Arabidopsis, new efforts to extend targeted methylation to crop plants, the current status of the technology and the challenges that remain to realize the full potential of targeted epigenome editing. We end with a forward-looking commentary on how epi-alleles might interface with breeding programs across a variety of crops.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.