APNet, an explainable sparse deep learning model to discover differentially active drivers of severe COVID-19.

George I Gavriilidis, Vasileios Vasileiou, Stella Dimitsaki, Georgios Karakatsoulis, Antonis Giannakakis, Georgios A Pavlopoulos, Fotis Psomopoulos
{"title":"APNet, an explainable sparse deep learning model to discover differentially active drivers of severe COVID-19.","authors":"George I Gavriilidis, Vasileios Vasileiou, Stella Dimitsaki, Georgios Karakatsoulis, Antonis Giannakakis, Georgios A Pavlopoulos, Fotis Psomopoulos","doi":"10.1093/bioinformatics/btaf063","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Computational analyses of bulk and single-cell omics provide translational insights into complex diseases, such as COVID-19, by revealing molecules, cellular phenotypes, and signalling patterns that contribute to unfavourable clinical outcomes. Current in silico approaches dovetail differential abundance, biostatistics, and machine learning, but often overlook nonlinear proteomic dynamics, like post-translational modifications, and provide limited biological interpretability beyond feature ranking.</p><p><strong>Results: </strong>We introduce APNet, a novel computational pipeline that combines differential activity analysis based on SJARACNe co-expression networks with PASNet, a biologically informed sparse deep learning model, to perform explainable predictions for COVID-19 severity. The APNet driver-pathway network ingests SJARACNe co-regulation and classification weights to aid result interpretation and hypothesis generation. APNet outperforms alternative models in patient classification across three COVID-19 proteomic datasets, identifying predictive drivers and pathways, including some confirmed in single-cell omics and highlighting under-explored biomarker circuitries in COVID-19.</p><p><strong>Availability and implementation: </strong>APNet's R, Python scripts, and Cytoscape methodologies are available at https://github.com/BiodataAnalysisGroup/APNet.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Computational analyses of bulk and single-cell omics provide translational insights into complex diseases, such as COVID-19, by revealing molecules, cellular phenotypes, and signalling patterns that contribute to unfavourable clinical outcomes. Current in silico approaches dovetail differential abundance, biostatistics, and machine learning, but often overlook nonlinear proteomic dynamics, like post-translational modifications, and provide limited biological interpretability beyond feature ranking.

Results: We introduce APNet, a novel computational pipeline that combines differential activity analysis based on SJARACNe co-expression networks with PASNet, a biologically informed sparse deep learning model, to perform explainable predictions for COVID-19 severity. The APNet driver-pathway network ingests SJARACNe co-regulation and classification weights to aid result interpretation and hypothesis generation. APNet outperforms alternative models in patient classification across three COVID-19 proteomic datasets, identifying predictive drivers and pathways, including some confirmed in single-cell omics and highlighting under-explored biomarker circuitries in COVID-19.

Availability and implementation: APNet's R, Python scripts, and Cytoscape methodologies are available at https://github.com/BiodataAnalysisGroup/APNet.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Finite-time annular domain stability and stabilisation of Itô-type stochastic time-varying systems with Wiener and Poisson noises
IF 2.1 4区 计算机科学International Journal of ControlPub Date : 2021-10-20 DOI: 10.1080/00207179.2021.1996633
Zhiguo Yan, Xiaomin Zhou, Dongkang Ji, M. Zhang
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI-Augmented Physics-Based Docking for Antibody-Antigen Complex Prediction. MR.RGM: An R Package for Fitting Bayesian Multivariate Bidirectional Mendelian Randomization Networks. Topology-based metrics for finding the optimal sparsity in gene regulatory network inference. Clustering individuals using INMTD: a novel versatile multi-view embedding framework integrating omics and imaging data. CytoSimplex: Visualizing Single-cell Fates and Transitions on a Simplex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1