5-Fluorouracil induces hair loss by inhibiting β-catenin signaling and angiogenesis

IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemico-Biological Interactions Pub Date : 2025-02-06 DOI:10.1016/j.cbi.2025.111416
Jung-Il Kang , Youn Kyung Choi , Sang-Chul Han , Jin Won Hyun , Young-Sang Koh , Jaeseong Oh , Hye-Jin Boo , Eun-Sook Yoo , Hee-Kyoung Kang
{"title":"5-Fluorouracil induces hair loss by inhibiting β-catenin signaling and angiogenesis","authors":"Jung-Il Kang ,&nbsp;Youn Kyung Choi ,&nbsp;Sang-Chul Han ,&nbsp;Jin Won Hyun ,&nbsp;Young-Sang Koh ,&nbsp;Jaeseong Oh ,&nbsp;Hye-Jin Boo ,&nbsp;Eun-Sook Yoo ,&nbsp;Hee-Kyoung Kang","doi":"10.1016/j.cbi.2025.111416","DOIUrl":null,"url":null,"abstract":"<div><div>Chemotherapy-induced alopecia (CIA) is a side effect of the anticancer drug 5-fluorouracil (5-FU). However, the mechanism of action in hair follicle cells is unclear. This study investigated the mechanism of action of 5-FU on the hair cycle and growth <em>in vitro</em> and <em>in vivo</em>. Intraperitoneal injection of 5-FU into C57BL/6 mice delayed anagen initiation, resulting in small hair follicles. 5-FU inhibited angiogenesis by reducing cluster of differentiation 31<sup>+</sup> cells, vascular endothelial growth factor, and fetal liver kinase-1 expression in mouse skin tissue and rat vibrissa dermal papilla (rDP) cells. 5-FU induced cell death in rDP cells and keratinocytes by enhancing cell cycle arrest or reducing the ratio of B-cell lymphoma 2 (Bcl-2) to Bcl-2-associated X levels. Immunoblotting and confocal microscopy showed that 5-FU inhibited the nuclear translocation of β-catenin in rDP cells and decreased fibroblast growth factor 7 and 10 secretion. Conversely, molecule-specific inhibitors did not prevent rDP cell death despite protein kinase B and Jun N-terminal kinase activation by 5-FU, indicating their indirect involvement. These results suggest that 5-FU inhibits wingless-related integration site/β-catenin signaling and angiogenesis, resulting in anagen-to-catagen transition and delaying anagen initiation. This study provides foundational data for developing treatments against CIA in patients with cancer undergoing 5-FU chemotherapy.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"408 ","pages":"Article 111416"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279725000468","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy-induced alopecia (CIA) is a side effect of the anticancer drug 5-fluorouracil (5-FU). However, the mechanism of action in hair follicle cells is unclear. This study investigated the mechanism of action of 5-FU on the hair cycle and growth in vitro and in vivo. Intraperitoneal injection of 5-FU into C57BL/6 mice delayed anagen initiation, resulting in small hair follicles. 5-FU inhibited angiogenesis by reducing cluster of differentiation 31+ cells, vascular endothelial growth factor, and fetal liver kinase-1 expression in mouse skin tissue and rat vibrissa dermal papilla (rDP) cells. 5-FU induced cell death in rDP cells and keratinocytes by enhancing cell cycle arrest or reducing the ratio of B-cell lymphoma 2 (Bcl-2) to Bcl-2-associated X levels. Immunoblotting and confocal microscopy showed that 5-FU inhibited the nuclear translocation of β-catenin in rDP cells and decreased fibroblast growth factor 7 and 10 secretion. Conversely, molecule-specific inhibitors did not prevent rDP cell death despite protein kinase B and Jun N-terminal kinase activation by 5-FU, indicating their indirect involvement. These results suggest that 5-FU inhibits wingless-related integration site/β-catenin signaling and angiogenesis, resulting in anagen-to-catagen transition and delaying anagen initiation. This study provides foundational data for developing treatments against CIA in patients with cancer undergoing 5-FU chemotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
3.90%
发文量
410
审稿时长
36 days
期刊介绍: Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.
期刊最新文献
Lactate-triggered histone lactylation contributes to podocyte epithelial-mesenchymal transition in diabetic nephropathy in mice Calibration and evaluation of a refined pharmacokinetic model for three homologs of phosphatidylethanol Fatty acid binding protein 4 regulates doxorubicin-induced renal injury via mediating lipid metabolism and apoptosis 5-Fluorouracil induces hair loss by inhibiting β-catenin signaling and angiogenesis Aristolochic acid I abnormally activates the wnt7b/β-catenin signaling pathway and affects the repair of renal tubules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1