Artem O. Denisov, Veronika Reckova, Solenn Cances, Max J. Ruckriegel, Michele Masseroni, Christoph Adam, Chuyao Tong, Jonas D. Gerber, Wei Wister Huang, Kenji Watanabe, Takashi Taniguchi, Thomas Ihn, Klaus Ensslin, Hadrien Duprez
{"title":"Spin–valley protected Kramers pair in bilayer graphene","authors":"Artem O. Denisov, Veronika Reckova, Solenn Cances, Max J. Ruckriegel, Michele Masseroni, Christoph Adam, Chuyao Tong, Jonas D. Gerber, Wei Wister Huang, Kenji Watanabe, Takashi Taniguchi, Thomas Ihn, Klaus Ensslin, Hadrien Duprez","doi":"10.1038/s41565-025-01858-8","DOIUrl":null,"url":null,"abstract":"<p>The intrinsic valley degree of freedom makes bilayer graphene (BLG) a unique platform for semiconductor qubits. The single-carrier quantum dot (QD) ground state exhibits a twofold degeneracy, where the two states that constitute a Kramers pair have opposite spin and valley quantum numbers. Because of the valley-dependent Berry curvature, an out-of-plane magnetic field breaks the time-reversal symmetry of this ground state and a qubit can be encoded in the spin–valley subspace. The Kramers states are protected against known spin- and valley-mixing mechanisms because mixing requires a simultaneous change of the two quantum numbers. Here, we fabricate a tunable QD device in Bernal BLG and measure a spin–valley relaxation time for the Kramers states of 38 s at 30 mK, which is two orders of magnitude longer than the 0.4 s measured for purely spin-blocked states. We also show that the intrinsic Kane–Mele spin–orbit splitting enables a Kramers doublet single-shot readout even at zero magnetic field with a fidelity above 99%. If these long-lived Kramers states also possess long coherence times and can be effectively manipulated, electrostatically defined QDs in BLG may serve as long-lived semiconductor qubits, extending beyond the spin qubit paradigm.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"64 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01858-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The intrinsic valley degree of freedom makes bilayer graphene (BLG) a unique platform for semiconductor qubits. The single-carrier quantum dot (QD) ground state exhibits a twofold degeneracy, where the two states that constitute a Kramers pair have opposite spin and valley quantum numbers. Because of the valley-dependent Berry curvature, an out-of-plane magnetic field breaks the time-reversal symmetry of this ground state and a qubit can be encoded in the spin–valley subspace. The Kramers states are protected against known spin- and valley-mixing mechanisms because mixing requires a simultaneous change of the two quantum numbers. Here, we fabricate a tunable QD device in Bernal BLG and measure a spin–valley relaxation time for the Kramers states of 38 s at 30 mK, which is two orders of magnitude longer than the 0.4 s measured for purely spin-blocked states. We also show that the intrinsic Kane–Mele spin–orbit splitting enables a Kramers doublet single-shot readout even at zero magnetic field with a fidelity above 99%. If these long-lived Kramers states also possess long coherence times and can be effectively manipulated, electrostatically defined QDs in BLG may serve as long-lived semiconductor qubits, extending beyond the spin qubit paradigm.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.