Slim Mzoughi, Megan Schwarz, Xuedi Wang, Deniz Demircioglu, Gulay Ulukaya, Kevin Mohammed, Habiba Zorgati, Denis Torre, Lewis E. Tomalin, Federico Di Tullio, Carlos Company, Yuliia Dramaretska, Marc Leushacke, Bruno Giotti, Tamsin RM Lannagan, Daniel Lozano-Ojalvo, Panagiotis Karras, Peter B. Vermeulen, Dan Hasson, Robert Sebra, Alexander M. Tsankov, Owen J. Sansom, Jean-Christophe Marine, Nick Barker, Gaetano Gargiulo, Ernesto Guccione
{"title":"Oncofetal reprogramming drives phenotypic plasticity in WNT-dependent colorectal cancer","authors":"Slim Mzoughi, Megan Schwarz, Xuedi Wang, Deniz Demircioglu, Gulay Ulukaya, Kevin Mohammed, Habiba Zorgati, Denis Torre, Lewis E. Tomalin, Federico Di Tullio, Carlos Company, Yuliia Dramaretska, Marc Leushacke, Bruno Giotti, Tamsin RM Lannagan, Daniel Lozano-Ojalvo, Panagiotis Karras, Peter B. Vermeulen, Dan Hasson, Robert Sebra, Alexander M. Tsankov, Owen J. Sansom, Jean-Christophe Marine, Nick Barker, Gaetano Gargiulo, Ernesto Guccione","doi":"10.1038/s41588-024-02058-1","DOIUrl":null,"url":null,"abstract":"<p>Targeting cancer stem cells (CSCs) is crucial for effective cancer treatment, yet resistance mechanisms to LGR5<sup>+</sup> CSC depletion in WNT-driven colorectal cancer (CRC) remain elusive. In the present study, we revealed that mutant intestinal stem cells (SCs) depart from their canonical identity, traversing a dynamic phenotypic spectrum. This enhanced plasticity is initiated by oncofetal (OnF) reprogramming, driven by YAP and AP-1, with subsequent AP-1 hyperactivation promoting lineage infidelity. The retinoid X receptor serves as a gatekeeper of OnF reprogramming and its deregulation after adenomatous polyposis coli (APC) loss of function establishes an OnF ‘memory’ sustained by YAP and AP-1. Notably, the clinical significance of OnF and LGR5<sup>+</sup> states in isolation is constrained by their functional redundancy. Although the canonical LGR5<sup>+</sup> state is sensitive to the FOLFIRI regimen, an active OnF program correlates with resistance, supporting its role in driving drug-tolerant states. Targeting this program in combination with the current standard of care is pivotal for achieving effective and durable CRC treatment.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"13 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-024-02058-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Targeting cancer stem cells (CSCs) is crucial for effective cancer treatment, yet resistance mechanisms to LGR5+ CSC depletion in WNT-driven colorectal cancer (CRC) remain elusive. In the present study, we revealed that mutant intestinal stem cells (SCs) depart from their canonical identity, traversing a dynamic phenotypic spectrum. This enhanced plasticity is initiated by oncofetal (OnF) reprogramming, driven by YAP and AP-1, with subsequent AP-1 hyperactivation promoting lineage infidelity. The retinoid X receptor serves as a gatekeeper of OnF reprogramming and its deregulation after adenomatous polyposis coli (APC) loss of function establishes an OnF ‘memory’ sustained by YAP and AP-1. Notably, the clinical significance of OnF and LGR5+ states in isolation is constrained by their functional redundancy. Although the canonical LGR5+ state is sensitive to the FOLFIRI regimen, an active OnF program correlates with resistance, supporting its role in driving drug-tolerant states. Targeting this program in combination with the current standard of care is pivotal for achieving effective and durable CRC treatment.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution