Ling Lv, Haikuo Zhang, Di Lu, Ruhong Li, Haotian Zhu, Baochen Ma, Shuoqing Zhang, Yiqiang Huang, Tao Zhou, Zunhao Fan, Jing Zhang, Lixin Chen, Xiayin Yao, Tao Deng, Xiulin Fan
{"title":"Additive engineering enables aggressive high-voltage LiCoO2 lithium-ion batteries","authors":"Ling Lv, Haikuo Zhang, Di Lu, Ruhong Li, Haotian Zhu, Baochen Ma, Shuoqing Zhang, Yiqiang Huang, Tao Zhou, Zunhao Fan, Jing Zhang, Lixin Chen, Xiayin Yao, Tao Deng, Xiulin Fan","doi":"10.1016/j.joule.2025.101846","DOIUrl":null,"url":null,"abstract":"The advancement of additive engineering in high-voltage LiCoO<sub>2</sub> (LCO)-based lithium-ion batteries (LIBs) is limited by the lack of effective guiding principles. Here, we report a lattice coupling mechanism for designing nitrile additives, systematically evaluating 20 candidates to quantify their enhancement effects on LCO performance. Key to this mechanism are two motif descriptors: the O 2<em>p</em> band center energy and the energy gap (<em>Δ</em><em>E</em>) between the O 2<em>p</em> band center and the Co <em>3d</em> band center, which significantly improve the structural and interfacial stability of the LCO cathode. Guided by this principle, we developed 1,2,2,3-propanetetracarbonitrile (PCN) as a representative additive, achieving 80% capacity retention in 4.55 V 1.0 Ah artificial graphite (AG)||LCO pouch cells after over 770 and 380 cycles at 25°C and 45°C, respectively. This work provides new insights into the exploration and evaluation of additive chemistry for high-voltage LCO cathode.","PeriodicalId":343,"journal":{"name":"Joule","volume":"53 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101846","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of additive engineering in high-voltage LiCoO2 (LCO)-based lithium-ion batteries (LIBs) is limited by the lack of effective guiding principles. Here, we report a lattice coupling mechanism for designing nitrile additives, systematically evaluating 20 candidates to quantify their enhancement effects on LCO performance. Key to this mechanism are two motif descriptors: the O 2p band center energy and the energy gap (ΔE) between the O 2p band center and the Co 3d band center, which significantly improve the structural and interfacial stability of the LCO cathode. Guided by this principle, we developed 1,2,2,3-propanetetracarbonitrile (PCN) as a representative additive, achieving 80% capacity retention in 4.55 V 1.0 Ah artificial graphite (AG)||LCO pouch cells after over 770 and 380 cycles at 25°C and 45°C, respectively. This work provides new insights into the exploration and evaluation of additive chemistry for high-voltage LCO cathode.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.