Nematicity and orbital depairing in superconducting Bernal bilayer graphene

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2025-02-10 DOI:10.1038/s41567-024-02776-7
Ludwig Holleis, Caitlin L. Patterson, Yiran Zhang, Yaar Vituri, Heun Mo Yoo, Haoxin Zhou, Takashi Taniguchi, Kenji Watanabe, Erez Berg, Stevan Nadj-Perge, Andrea F. Young
{"title":"Nematicity and orbital depairing in superconducting Bernal bilayer graphene","authors":"Ludwig Holleis, Caitlin L. Patterson, Yiran Zhang, Yaar Vituri, Heun Mo Yoo, Haoxin Zhou, Takashi Taniguchi, Kenji Watanabe, Erez Berg, Stevan Nadj-Perge, Andrea F. Young","doi":"10.1038/s41567-024-02776-7","DOIUrl":null,"url":null,"abstract":"<p>Superconductivity is a common feature of graphite allotropes, having been observed in Bernal bilayers, rhombohedral trilayers and a wide variety of angle-misaligned multilayers. Despite notable differences in the electronic structure of these systems, supporting the graphite on a WSe<sub>2</sub> substrate has been consistently observed to expand the range of the superconductivity in terms of carrier density and temperature. Here we report the observation of two distinct superconducting states in Bernal bilayer graphene with strong proximity-induced Ising spin–orbit coupling. Our quantum oscillation measurements show that, although the normal state of the first superconducting phase is consistent with the single-particle band structure, the second emerges from a nematic normal state with broken rotational symmetry. Both superconductors are robust to in-plane magnetic fields, but neither reach fields expected for spin–valley-locked Ising superconductors. The Fermi surface geometry of the first superconducting phase suggests that the superconductivity is limited by orbital depairing arising from the imperfect layer polarization of the electron wavefunctions. Finally, an analysis of transport and thermodynamic compressibility measurements in the second superconducting phase shows that the proximity to isospin phase boundaries, observed in other rhombohedral graphene allotropes, is probably coincidental, thus constraining theories of the pairing mechanisms in these systems.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"16 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02776-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Superconductivity is a common feature of graphite allotropes, having been observed in Bernal bilayers, rhombohedral trilayers and a wide variety of angle-misaligned multilayers. Despite notable differences in the electronic structure of these systems, supporting the graphite on a WSe2 substrate has been consistently observed to expand the range of the superconductivity in terms of carrier density and temperature. Here we report the observation of two distinct superconducting states in Bernal bilayer graphene with strong proximity-induced Ising spin–orbit coupling. Our quantum oscillation measurements show that, although the normal state of the first superconducting phase is consistent with the single-particle band structure, the second emerges from a nematic normal state with broken rotational symmetry. Both superconductors are robust to in-plane magnetic fields, but neither reach fields expected for spin–valley-locked Ising superconductors. The Fermi surface geometry of the first superconducting phase suggests that the superconductivity is limited by orbital depairing arising from the imperfect layer polarization of the electron wavefunctions. Finally, an analysis of transport and thermodynamic compressibility measurements in the second superconducting phase shows that the proximity to isospin phase boundaries, observed in other rhombohedral graphene allotropes, is probably coincidental, thus constraining theories of the pairing mechanisms in these systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Diffraction minima resolve point scatterers at few hundredths of the wavelength Cyclic jetting enables microbubble-mediated drug delivery Topology shapes dynamics of higher-order networks Universal dissipative dynamics in strongly correlated quantum gases Author Correction: Magnetic flux trapping in hydrogen-rich high-temperature superconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1