A Laboratory Module for Physical Chemistry and Analytical Chemistry: The Kinetics of Aspirin Hydrolysis and Its Quantitation in Pharmaceutical Tablets

IF 2.5 3区 教育学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Chemical Education Pub Date : 2025-01-30 DOI:10.1021/acs.jchemed.4c0080910.1021/acs.jchemed.4c00809
Victoire Delattre, Remi Olivier Labeille, Nicholas Slade Shropshire, Kyra Grace Kaiser, Brent Kirkland, Keith Zvoch and Ioana Emilia Pavel*, 
{"title":"A Laboratory Module for Physical Chemistry and Analytical Chemistry: The Kinetics of Aspirin Hydrolysis and Its Quantitation in Pharmaceutical Tablets","authors":"Victoire Delattre,&nbsp;Remi Olivier Labeille,&nbsp;Nicholas Slade Shropshire,&nbsp;Kyra Grace Kaiser,&nbsp;Brent Kirkland,&nbsp;Keith Zvoch and Ioana Emilia Pavel*,&nbsp;","doi":"10.1021/acs.jchemed.4c0080910.1021/acs.jchemed.4c00809","DOIUrl":null,"url":null,"abstract":"<p >In this three-component laboratory module, upper-division chemistry students were introduced to the kinetics of the aspirin hydrolysis reaction and determined the concentration of its active pharmaceutical ingredient (acetylsalicylic acid-ASA) using a modern, benchtop ultraviolet–visible (UV–vis) absorption spectrophotometer. In the first component, students prepared analyte solutions from over-the-counter aspirin tablets and a relevant number of standards (n = 9–10) through both serial and parallel dilutions. In the second component, the ASA concentrations of three over-the-counter formulations (325 mg per tablet) were determined with percent differences as small as 1.1% using the Beer–Lambert law and external calibration curves. In the third component, students evaluated the reaction order (pseudo-first order), the rate constant (e.g., k <i>=</i> 3.0 × 10<sup>–4</sup> s<sup>–1</sup> at 75 °C), and the activation energy (<i>E</i><sub>a</sub> ∼ 67.3 kJ mol<sup>–1</sup>) of the hydrolysis reaction of ASA at various temperatures (e.g., 25, 37, 50, 75, and 85 °C). The last component was completed using a student-centered instructional approach, namely, process-oriented guided-inquiry learning (POGIL), which helped refine students’ research process skills and both basic and in-depth laboratory skills (weighing, solution handling, micropipetting, operation of a pH meter and a modern, benchtop absorption spectrophotometer). The student and instructor evaluations indicated a positive learning experience and high interest in this laboratory that was inspired by the quality control and quality assurance of pharmaceutical drugs.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"102 2","pages":"746–753 746–753"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jchemed.4c00809","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00809","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this three-component laboratory module, upper-division chemistry students were introduced to the kinetics of the aspirin hydrolysis reaction and determined the concentration of its active pharmaceutical ingredient (acetylsalicylic acid-ASA) using a modern, benchtop ultraviolet–visible (UV–vis) absorption spectrophotometer. In the first component, students prepared analyte solutions from over-the-counter aspirin tablets and a relevant number of standards (n = 9–10) through both serial and parallel dilutions. In the second component, the ASA concentrations of three over-the-counter formulations (325 mg per tablet) were determined with percent differences as small as 1.1% using the Beer–Lambert law and external calibration curves. In the third component, students evaluated the reaction order (pseudo-first order), the rate constant (e.g., k = 3.0 × 10–4 s–1 at 75 °C), and the activation energy (Ea ∼ 67.3 kJ mol–1) of the hydrolysis reaction of ASA at various temperatures (e.g., 25, 37, 50, 75, and 85 °C). The last component was completed using a student-centered instructional approach, namely, process-oriented guided-inquiry learning (POGIL), which helped refine students’ research process skills and both basic and in-depth laboratory skills (weighing, solution handling, micropipetting, operation of a pH meter and a modern, benchtop absorption spectrophotometer). The student and instructor evaluations indicated a positive learning experience and high interest in this laboratory that was inspired by the quality control and quality assurance of pharmaceutical drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Education
Journal of Chemical Education 化学-化学综合
CiteScore
5.60
自引率
50.00%
发文量
465
审稿时长
6.5 months
期刊介绍: The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.
期刊最新文献
Issue Editorial Masthead Issue Publication Information A Look at the Editorial Team of the Journal for 2025 Engaging Students in Spectroscopic Analysis of Organic Compounds: A Collaborative Tournament Approach for Third-Year Chemistry Students in Northern France A Laboratory Module for Physical Chemistry and Analytical Chemistry: The Kinetics of Aspirin Hydrolysis and Its Quantitation in Pharmaceutical Tablets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1