{"title":"Lightweight designs of simply supported tensegrity structures and their applications to bridges","authors":"Guangtao Zhang , Muhao Chen , Daihai Chen , Yuling Shen","doi":"10.1016/j.compstruct.2025.118923","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents lightweight designs using the tensegrity paradigm for the simply supported problem. Three tensegrity solutions are explored: super-structures, sub-structures, and cable-structures. The basic units of the three kinds are first studied, where we analytically calculate the minimal mass required, along with the optimal inclinations angles, to sustain a simply supported load. By applying self-similar rules and varying the structure subdivisions and complexities, the structure mass is further minimized under bar-yielding and buckling constraints. This study finds the optimal complexities and subdivisions of the three solutions. Numerical results validate and compare the minimal mass designs. These proposed lightweight designs are applicable to bridge designs and other scenarios that undergo simply supported loads.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"357 ","pages":"Article 118923"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325000881","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents lightweight designs using the tensegrity paradigm for the simply supported problem. Three tensegrity solutions are explored: super-structures, sub-structures, and cable-structures. The basic units of the three kinds are first studied, where we analytically calculate the minimal mass required, along with the optimal inclinations angles, to sustain a simply supported load. By applying self-similar rules and varying the structure subdivisions and complexities, the structure mass is further minimized under bar-yielding and buckling constraints. This study finds the optimal complexities and subdivisions of the three solutions. Numerical results validate and compare the minimal mass designs. These proposed lightweight designs are applicable to bridge designs and other scenarios that undergo simply supported loads.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.