Mindaugas Visockis, Paulius Ruzgys, Simona Gelažunaitė, Salvijus Vykertas, Saulius Šatkauskas
{"title":"Application of pulsed electric field (PEF) as a strategy to enhance aminoglycosides efficacy against Gram-negative bacteria","authors":"Mindaugas Visockis, Paulius Ruzgys, Simona Gelažunaitė, Salvijus Vykertas, Saulius Šatkauskas","doi":"10.1016/j.bioelechem.2025.108935","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, two aminoglycosides (AGs), Kanamycin and Gentamicin, with similar modes of action and molecular weights, were combined with PEF treatment to enhance the inactivation of <em>E. coli</em> cells. Various PEF strengths were applied to assess the combined effect. To compare the inactivation efficacy of different AGs, bacterial growth measurements in suspension were performed at 3 and 10 h intervals over a 10-h period after PEF treatment. Interestingly, it was found that the additive effect of PEF treatment on <em>E. coli</em> growth inhibition was significantly greater with Kanamycin (IC<sub>50</sub>) than with Gentamicin (IC<sub>50</sub>). Further analysis revealed that the combined treatment with Kanamycin (IC<sub>50</sub>) was most effective within a timeframe of around 3 h. Our findings suggest that PEF treatment can significantly enhance the efficacy of AGs against Gram-negative bacteria; however, the extent of the additive effect varies depending on the specific antibiotic and the intensity of the applied PEF treatment.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108935"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000386","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, two aminoglycosides (AGs), Kanamycin and Gentamicin, with similar modes of action and molecular weights, were combined with PEF treatment to enhance the inactivation of E. coli cells. Various PEF strengths were applied to assess the combined effect. To compare the inactivation efficacy of different AGs, bacterial growth measurements in suspension were performed at 3 and 10 h intervals over a 10-h period after PEF treatment. Interestingly, it was found that the additive effect of PEF treatment on E. coli growth inhibition was significantly greater with Kanamycin (IC50) than with Gentamicin (IC50). Further analysis revealed that the combined treatment with Kanamycin (IC50) was most effective within a timeframe of around 3 h. Our findings suggest that PEF treatment can significantly enhance the efficacy of AGs against Gram-negative bacteria; however, the extent of the additive effect varies depending on the specific antibiotic and the intensity of the applied PEF treatment.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.