Highly fluorescent 3-perylenyldiphenylphosphane compounds: An experimental and theoretical study

IF 4.1 3区 工程技术 Q2 CHEMISTRY, APPLIED Dyes and Pigments Pub Date : 2025-02-04 DOI:10.1016/j.dyepig.2025.112690
J. Emilio Expósito , Sergio Lentijo , Gabriel Aullón , Manuel Bardají , Jesús A. Miguel
{"title":"Highly fluorescent 3-perylenyldiphenylphosphane compounds: An experimental and theoretical study","authors":"J. Emilio Expósito ,&nbsp;Sergio Lentijo ,&nbsp;Gabriel Aullón ,&nbsp;Manuel Bardají ,&nbsp;Jesús A. Miguel","doi":"10.1016/j.dyepig.2025.112690","DOIUrl":null,"url":null,"abstract":"<div><div>The perylene derivative, 3-perylenyldiphenylphosphane (PPh<sub>2</sub>Per, <strong>1</strong>), was prepared and used to synthesize the oxidized P(V) compounds A = PPh<sub>2</sub>Per (A = O (<strong>2</strong>); A = S (<strong>3</strong>)). Substitution reactions led to mononuclear gold(I) complexes [AuX(PPh<sub>2</sub>Per)] (X = Cl (<strong>4</strong>); X = C<sub>6</sub>F<sub>5</sub> (<strong>5</strong>)), [AuX(S=PPh<sub>2</sub>Per)] (X = Cl (<strong>6</strong>); X <strong>=</strong> C<sub>6</sub>F<sub>5</sub> (<strong>7</strong>)) and palladium(II) complexes <em>trans</em>-[Pd(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>(PPh<sub>2</sub>Per)<sub>2</sub>] (<strong>8</strong>). X-ray single crystal studies of compounds <strong>5</strong> and <strong>7</strong> confirmed the expected structures. The UV–Vis absorption spectra display intense peaks in the visible region with maxima from 454 to 461 nm. A DFT study was performed for the absorption spectra of ligands and complexes, showing that the lowest most intense transition is a HOMO → LUMO transition in the perylene core, although affected by functional group and metallic fragment. The ligands and their complexes are fluorescent in solution, due to the perylene fragment, showing an emission in the range 450–550 nm, with maxima from 467 to 472 nm. Quantum yield starts at 13 % for the phosphane and increases dramatically to the range of 63–87 % after oxidation or coordination to a metal fragment. This work illustrates how the PET effect can be used to recover the initial extremely intense emission of free unfunctionalized perylene ring system.</div></div>","PeriodicalId":302,"journal":{"name":"Dyes and Pigments","volume":"236 ","pages":"Article 112690"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dyes and Pigments","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143720825000609","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The perylene derivative, 3-perylenyldiphenylphosphane (PPh2Per, 1), was prepared and used to synthesize the oxidized P(V) compounds A = PPh2Per (A = O (2); A = S (3)). Substitution reactions led to mononuclear gold(I) complexes [AuX(PPh2Per)] (X = Cl (4); X = C6F5 (5)), [AuX(S=PPh2Per)] (X = Cl (6); X = C6F5 (7)) and palladium(II) complexes trans-[Pd(C6F5)2(PPh2Per)2] (8). X-ray single crystal studies of compounds 5 and 7 confirmed the expected structures. The UV–Vis absorption spectra display intense peaks in the visible region with maxima from 454 to 461 nm. A DFT study was performed for the absorption spectra of ligands and complexes, showing that the lowest most intense transition is a HOMO → LUMO transition in the perylene core, although affected by functional group and metallic fragment. The ligands and their complexes are fluorescent in solution, due to the perylene fragment, showing an emission in the range 450–550 nm, with maxima from 467 to 472 nm. Quantum yield starts at 13 % for the phosphane and increases dramatically to the range of 63–87 % after oxidation or coordination to a metal fragment. This work illustrates how the PET effect can be used to recover the initial extremely intense emission of free unfunctionalized perylene ring system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Dyes and Pigments
Dyes and Pigments 工程技术-材料科学:纺织
CiteScore
8.20
自引率
13.30%
发文量
933
审稿时长
33 days
期刊介绍: Dyes and Pigments covers the scientific and technical aspects of the chemistry and physics of dyes, pigments and their intermediates. Emphasis is placed on the properties of the colouring matters themselves rather than on their applications or the system in which they may be applied. Thus the journal accepts research and review papers on the synthesis of dyes, pigments and intermediates, their physical or chemical properties, e.g. spectroscopic, surface, solution or solid state characteristics, the physical aspects of their preparation, e.g. precipitation, nucleation and growth, crystal formation, liquid crystalline characteristics, their photochemical, ecological or biological properties and the relationship between colour and chemical constitution. However, papers are considered which deal with the more fundamental aspects of colourant application and of the interactions of colourants with substrates or media. The journal will interest a wide variety of workers in a range of disciplines whose work involves dyes, pigments and their intermediates, and provides a platform for investigators with common interests but diverse fields of activity such as cosmetics, reprographics, dye and pigment synthesis, medical research, polymers, etc.
期刊最新文献
Editorial Board Recent advances in Schiff base coinage metal complexes as anticancer agents: A comprehensive review (2021–2025) The amazing world of biological pigments: A review on microbial melanins In-silico color prediction process for natural dyes in Madder Atom-efficient and self-delivered prodrug based on methylene blue and doxorubicin for tumor combination therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1