Optimization of ion transport in two-dimensional nanofluidic membranes for osmotic energy conversion

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2025-01-01 DOI:10.1016/j.mattod.2024.12.001
Kunpeng Mao , Chao Liu , Anqi Ni , Jiali Wang , Jingwen Sun , Guoxiu Wang , Pan Xiong , Junwu Zhu
{"title":"Optimization of ion transport in two-dimensional nanofluidic membranes for osmotic energy conversion","authors":"Kunpeng Mao ,&nbsp;Chao Liu ,&nbsp;Anqi Ni ,&nbsp;Jiali Wang ,&nbsp;Jingwen Sun ,&nbsp;Guoxiu Wang ,&nbsp;Pan Xiong ,&nbsp;Junwu Zhu","doi":"10.1016/j.mattod.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>Osmotic energy, a promising renewable energy source, is generated by selective ion transport driven by the salinity gradient between seawater and river water. Selective and ultrafast ion transport is highly desirable for osmotic energy conversion. Due to the amazing diversity of designable nanochannels, two-dimensional (2D) nanofluidic membranes can precisely regulate ion transport to optimize osmotic energy conversion, opening up new avenues for osmotic energy conversion. Here, we summarize the strategies to optimize ion transport within 2D nanofluidic membranes to enhance osmotic energy conversion. Firstly, we introduce ion transport pathways and mechanisms within 2D nanofluidic membranes. Subsequently, we survey different strategies to improve ion transport for optimizing 2D nanofluidic membranes. Following this, we discuss the applications of osmotic energy and its integration with other technologies. Finally, we outline the obstacles to the development of osmotic energy conversion and propose some perspectives for future applications.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"82 ","pages":"Pages 274-288"},"PeriodicalIF":21.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002785","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Osmotic energy, a promising renewable energy source, is generated by selective ion transport driven by the salinity gradient between seawater and river water. Selective and ultrafast ion transport is highly desirable for osmotic energy conversion. Due to the amazing diversity of designable nanochannels, two-dimensional (2D) nanofluidic membranes can precisely regulate ion transport to optimize osmotic energy conversion, opening up new avenues for osmotic energy conversion. Here, we summarize the strategies to optimize ion transport within 2D nanofluidic membranes to enhance osmotic energy conversion. Firstly, we introduce ion transport pathways and mechanisms within 2D nanofluidic membranes. Subsequently, we survey different strategies to improve ion transport for optimizing 2D nanofluidic membranes. Following this, we discuss the applications of osmotic energy and its integration with other technologies. Finally, we outline the obstacles to the development of osmotic energy conversion and propose some perspectives for future applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Elastic metallic conductors enabling stretchable electronic circuits for on-skin motion recognition Quantum dots in S-scheme photocatalysts Optimization of ion transport in two-dimensional nanofluidic membranes for osmotic energy conversion Lewis acid molten salt synthesis of 2D MXenes with fine-tuned surface terminations for energy storage and conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1