{"title":"Unveiling the Potential of Nanosuspension Formulation Strategy for Improved Oral Bioavailability of Gefitinib","authors":"Parvez Sayyad, Shikha Jha, Reena Sharma, Vivek Yadav, Sanyog Jain","doi":"10.1208/s12249-025-03040-8","DOIUrl":null,"url":null,"abstract":"<div><p>Gefitinib (GB), an oral tyrosine kinase inhibitor suffers major setbacks in clinical application due to limited aqueous solubility leading to poor oral bioavailability. Nanosuspension serves as a promising formulation strategy to overcome the above-mentioned drawbacks. Hence, the present study involves the development of gefitinib nanosuspension (GB-NS) using High-pressure homogenization (HPH) to increase its aqueous solubility and maximize oral bioavailability. GB-NS was optimized by utilizing the quality-by-design strategy to optimize independent variables such as homogenization pressure, drug-to-stabilizer ratio, and number of cycles. Lecithin was found to stabilize the nanosuspension with optimal particle size, PDI, and zeta potential of 157 ± 18.77 nm, 0.296 ± 0.040, and -33.25 respectively. Intriguingly, a drug-to-stabilizer ratio significantly influenced (p < 0.005) particle size and PDI, establishing its crucial role in optimization. The morphological characterization by SEM of GB-NS revealed a rod-shaped structure. Thereafter, the thermal and powder X-ray analysis depicted the crystalline nature of gefitinib in GB-NS. Additionally, GB-NS exhibited enhanced saturation solubility (~ 2.4- and ~ 3.4-fold) and dissolution rate (~ 2.5- and ~ 3.5-fold) compared to pure GB in 0.1 N HCl and PBS 6.8 respectively. GB-NS remained stable under both storage conditions ( 25°C and 4°C). Finally, the pharmacokinetic study depicted a considerable increase in C<sub>max</sub> (~ 2.84-fold) and AUC<sub>(0-t)</sub> (~ 3.87-fold) of GB-NS when compared to free GB. Therefore, developed formulations showed a competent solution for enhancing the oral bioavailability of poor water-soluble drugs.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03040-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Gefitinib (GB), an oral tyrosine kinase inhibitor suffers major setbacks in clinical application due to limited aqueous solubility leading to poor oral bioavailability. Nanosuspension serves as a promising formulation strategy to overcome the above-mentioned drawbacks. Hence, the present study involves the development of gefitinib nanosuspension (GB-NS) using High-pressure homogenization (HPH) to increase its aqueous solubility and maximize oral bioavailability. GB-NS was optimized by utilizing the quality-by-design strategy to optimize independent variables such as homogenization pressure, drug-to-stabilizer ratio, and number of cycles. Lecithin was found to stabilize the nanosuspension with optimal particle size, PDI, and zeta potential of 157 ± 18.77 nm, 0.296 ± 0.040, and -33.25 respectively. Intriguingly, a drug-to-stabilizer ratio significantly influenced (p < 0.005) particle size and PDI, establishing its crucial role in optimization. The morphological characterization by SEM of GB-NS revealed a rod-shaped structure. Thereafter, the thermal and powder X-ray analysis depicted the crystalline nature of gefitinib in GB-NS. Additionally, GB-NS exhibited enhanced saturation solubility (~ 2.4- and ~ 3.4-fold) and dissolution rate (~ 2.5- and ~ 3.5-fold) compared to pure GB in 0.1 N HCl and PBS 6.8 respectively. GB-NS remained stable under both storage conditions ( 25°C and 4°C). Finally, the pharmacokinetic study depicted a considerable increase in Cmax (~ 2.84-fold) and AUC(0-t) (~ 3.87-fold) of GB-NS when compared to free GB. Therefore, developed formulations showed a competent solution for enhancing the oral bioavailability of poor water-soluble drugs.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.