{"title":"Inhibitory Effects and Mechanisms of Water-Soluble Chitosan/Curdlan Edible Composite Coating on Polygalacturonase and β-Glucosidase","authors":"Kunyu Liu, Ziyu Jing, Jiasi Li, Jiaqi Chang, Hesheng Wang, Silong Jia, Youwei Yu, Shaoying Zhang","doi":"10.1155/jfbc/8884163","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Postharvest fruits such as cherry tomato (<i>Lycopersicon esculentum</i> var. cerasiforme A. Gray) are prone to rot owing to the infection of pathogens, leading to great economic losses to farmers. To investigate the inhibitory effect and mechanism of polygalacturonase and β-glucosidase activity in cherry tomatoes and pathogenic fungi such as <i>Alternaria</i> (Nees: Fr) and <i>Botrytis cinerea</i>, various analyses including molecular simulation, ultraviolet spectrum, fluorescence spectrum, circular binary chromatography, inhibition rate, and enzymatic activity test were studied. The results showed that composite coating of water-soluble chitosan (CTS)/curdlan (CUR) significantly inhibited the activities of polygalacturonase and β-glucosidase in cherry tomatoes, <i>Alternaria (Nees: Fr)</i>, and <i>Botrytis cinerea</i>. In addition, composite coating induced changes in enzyme conformation leading to a decrease in the rate of cell wall degradation in cherry tomatoes. The composite membrane inhibited 85% of polygalacturonase and 88% of the polygalacturonase and the ASP ASN ARG PRO GLU GLN and TRP residue of the β-glucosidase, thereby significantly inhibiting the decay of cherry tomatoes. In conclusion, the composite coating might inhibit the enzyme activity altering the enzyme structure, which showed promise as an effective method for fruit preservation.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2025 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfbc/8884163","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/jfbc/8884163","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Postharvest fruits such as cherry tomato (Lycopersicon esculentum var. cerasiforme A. Gray) are prone to rot owing to the infection of pathogens, leading to great economic losses to farmers. To investigate the inhibitory effect and mechanism of polygalacturonase and β-glucosidase activity in cherry tomatoes and pathogenic fungi such as Alternaria (Nees: Fr) and Botrytis cinerea, various analyses including molecular simulation, ultraviolet spectrum, fluorescence spectrum, circular binary chromatography, inhibition rate, and enzymatic activity test were studied. The results showed that composite coating of water-soluble chitosan (CTS)/curdlan (CUR) significantly inhibited the activities of polygalacturonase and β-glucosidase in cherry tomatoes, Alternaria (Nees: Fr), and Botrytis cinerea. In addition, composite coating induced changes in enzyme conformation leading to a decrease in the rate of cell wall degradation in cherry tomatoes. The composite membrane inhibited 85% of polygalacturonase and 88% of the polygalacturonase and the ASP ASN ARG PRO GLU GLN and TRP residue of the β-glucosidase, thereby significantly inhibiting the decay of cherry tomatoes. In conclusion, the composite coating might inhibit the enzyme activity altering the enzyme structure, which showed promise as an effective method for fruit preservation.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality