Md Belal Bin Heyat, Deepak Adhikari, Faijan Akhtar, Saba Parveen, Hafiz Muhammad Zeeshan, Hadaate Ullah, Yun-Hsuan Chen, Lu Wang, Mohamad Sawan
{"title":"Intelligent Internet of Medical Things for Depression: Current Advancements, Challenges, and Trends","authors":"Md Belal Bin Heyat, Deepak Adhikari, Faijan Akhtar, Saba Parveen, Hafiz Muhammad Zeeshan, Hadaate Ullah, Yun-Hsuan Chen, Lu Wang, Mohamad Sawan","doi":"10.1155/int/6801530","DOIUrl":null,"url":null,"abstract":"<div>\n <p>We investigated the fusion of the Intelligent Internet of Medical Things (IIoMT) with depression management, aiming to autonomously identify, monitor, and offer accurate advice without direct professional intervention. Addressing pivotal questions regarding IIoMT’s role in depression identification, its correlation with stress and anxiety, the impact of machine learning (ML) and deep learning (DL) on depressive disorders, and the challenges and potential prospects of integrating depression management with IIoMT, this research offers significant contributions. It integrates artificial intelligence (AI) and Internet of Things (IoT) paradigms to expand depression studies, highlighting data science modeling’s practical application for intelligent service delivery in real-world settings, emphasizing the benefits of data science within IoT. Furthermore, it outlines an IIoMT architecture for gathering, analyzing, and preempting depressive disorders, employing advanced analytics to enhance application intelligence. The study also identifies current challenges, future research trajectories, and potential solutions within this domain, contributing to the scientific understanding and application of IIoMT in depression management. It evaluates 168 closely related articles from various databases, including Web of Science (WoS) and Google Scholar, after the rejection of repeated articles and books. The research shows that there is 48% growth in research articles, mainly focusing on symptoms, detection, and classification. Similarly, most research is being conducted in the United States of America, and the trend is increasing in other countries around the globe. These results suggest the essence of automated detection, monitoring, and suggestions for handling depression.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6801530","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/6801530","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the fusion of the Intelligent Internet of Medical Things (IIoMT) with depression management, aiming to autonomously identify, monitor, and offer accurate advice without direct professional intervention. Addressing pivotal questions regarding IIoMT’s role in depression identification, its correlation with stress and anxiety, the impact of machine learning (ML) and deep learning (DL) on depressive disorders, and the challenges and potential prospects of integrating depression management with IIoMT, this research offers significant contributions. It integrates artificial intelligence (AI) and Internet of Things (IoT) paradigms to expand depression studies, highlighting data science modeling’s practical application for intelligent service delivery in real-world settings, emphasizing the benefits of data science within IoT. Furthermore, it outlines an IIoMT architecture for gathering, analyzing, and preempting depressive disorders, employing advanced analytics to enhance application intelligence. The study also identifies current challenges, future research trajectories, and potential solutions within this domain, contributing to the scientific understanding and application of IIoMT in depression management. It evaluates 168 closely related articles from various databases, including Web of Science (WoS) and Google Scholar, after the rejection of repeated articles and books. The research shows that there is 48% growth in research articles, mainly focusing on symptoms, detection, and classification. Similarly, most research is being conducted in the United States of America, and the trend is increasing in other countries around the globe. These results suggest the essence of automated detection, monitoring, and suggestions for handling depression.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.