Jianhua Yang, Yi Liao, Fei Shang, Xiangui Kang, Yifang Chen, Yun-Qing Shi
{"title":"JPEG Image Steganography With Automatic Embedding Cost Learning","authors":"Jianhua Yang, Yi Liao, Fei Shang, Xiangui Kang, Yifang Chen, Yun-Qing Shi","doi":"10.1155/int/5309734","DOIUrl":null,"url":null,"abstract":"<div>\n <p>A great challenge to steganography has arisen with the wide application of steganalysis methods based on convolutional neural networks (CNNs). To this end, embedding cost learning frameworks based on generative adversarial networks (GANs) has been proposed and achieved success for spatial image steganography. However, the application of GAN to JPEG steganography is still in the prototype stage; its antidetectability and training efficiency should be improved. In conventional steganography, research has shown that the side information calculated from the precover can be used to enhance security. However, it is hard to calculate the side information without the spatial domain image. In this work, an embedding cost learning framework for JPEG image steganography via a GAN (JS–GAN) has been proposed, the learned embedding cost can be further adjusted asymmetrically according to the estimated side information (ESI). Experimental results have demonstrated that the proposed method can automatically learn a content-adaptive embedding cost function, and using the ESI properly can effectively improve the security performance. For example, under the attack of a classic steganalyzer GFR with a quality factor of 75 and 0.4 bpnzAC, the proposed JS–GAN can increase the detection error by 2.58% over J-UNIWARD, and the ESI–aided version JS–GAN (ESI) can further increase the security performance by 11.25% over JS–GAN.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/5309734","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/5309734","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A great challenge to steganography has arisen with the wide application of steganalysis methods based on convolutional neural networks (CNNs). To this end, embedding cost learning frameworks based on generative adversarial networks (GANs) has been proposed and achieved success for spatial image steganography. However, the application of GAN to JPEG steganography is still in the prototype stage; its antidetectability and training efficiency should be improved. In conventional steganography, research has shown that the side information calculated from the precover can be used to enhance security. However, it is hard to calculate the side information without the spatial domain image. In this work, an embedding cost learning framework for JPEG image steganography via a GAN (JS–GAN) has been proposed, the learned embedding cost can be further adjusted asymmetrically according to the estimated side information (ESI). Experimental results have demonstrated that the proposed method can automatically learn a content-adaptive embedding cost function, and using the ESI properly can effectively improve the security performance. For example, under the attack of a classic steganalyzer GFR with a quality factor of 75 and 0.4 bpnzAC, the proposed JS–GAN can increase the detection error by 2.58% over J-UNIWARD, and the ESI–aided version JS–GAN (ESI) can further increase the security performance by 11.25% over JS–GAN.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.