Cryptocurrency Trend Prediction Through Hybrid Deep Transfer Learning

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Intelligent Systems Pub Date : 2025-02-14 DOI:10.1155/int/4211799
Kia Jahanbin, Mohammad Ali Zare Chahooki
{"title":"Cryptocurrency Trend Prediction Through Hybrid Deep Transfer Learning","authors":"Kia Jahanbin,&nbsp;Mohammad Ali Zare Chahooki","doi":"10.1155/int/4211799","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The impact of sentiment analysis of comments on social networks such as X (Twitter) on the cryptocurrency market’s behavior has been proven. Also, traditional sentiment analysis and not considering the possible aspects of tweets can cause the deep model to be misleading in predicting the price trend of cryptocurrencies. In this research, a model using transfer learning and the combination of pretrained DistilBERT networks, BiGRU deep neural network, and attention layer is presented to analyze the sentiments based on the aspect of tweets and predict the price trend of eight cryptocurrencies. These tweets are the opinions of 70 cryptocurrency expert influencers. After preprocessing, these tweets are injected into the hybrid model of DistilBERT, BiGRU, and attention layer (HDBA) to extract the aspect and determine the polarity of each aspect. The output of the HDBA model is entered into the combined model of BiGRU and the attention layer (HBA) to predict the price trend of each cryptocurrency in intervals of 1–10 days. The output of the HBA model is the best time interval of the influence of the sentiments of tweets on the price trend of cryptocurrencies. The results show that the HDBA model has improved the performance of the aspect-based sentiment analysis task by an average of 3% in the benchmark datasets. The results of the HBA model also show that this model has been able to predict the best time frame of the impact of sentiments on the behavior of the cryptocurrency market with an average accuracy of 68% and a precision of 73%.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4211799","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/4211799","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of sentiment analysis of comments on social networks such as X (Twitter) on the cryptocurrency market’s behavior has been proven. Also, traditional sentiment analysis and not considering the possible aspects of tweets can cause the deep model to be misleading in predicting the price trend of cryptocurrencies. In this research, a model using transfer learning and the combination of pretrained DistilBERT networks, BiGRU deep neural network, and attention layer is presented to analyze the sentiments based on the aspect of tweets and predict the price trend of eight cryptocurrencies. These tweets are the opinions of 70 cryptocurrency expert influencers. After preprocessing, these tweets are injected into the hybrid model of DistilBERT, BiGRU, and attention layer (HDBA) to extract the aspect and determine the polarity of each aspect. The output of the HDBA model is entered into the combined model of BiGRU and the attention layer (HBA) to predict the price trend of each cryptocurrency in intervals of 1–10 days. The output of the HBA model is the best time interval of the influence of the sentiments of tweets on the price trend of cryptocurrencies. The results show that the HDBA model has improved the performance of the aspect-based sentiment analysis task by an average of 3% in the benchmark datasets. The results of the HBA model also show that this model has been able to predict the best time frame of the impact of sentiments on the behavior of the cryptocurrency market with an average accuracy of 68% and a precision of 73%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
期刊最新文献
Recent Advances in Automatic Modulation Classification Technology: Methods, Results, and Prospects Neuron Segmentation via a Frequency and Spatial Domain–Integrated Encoder–Decoder Network Multifunctional Metasurface Design via Physics-Simplified Machine Learning JPEG Image Steganography With Automatic Embedding Cost Learning Cryptocurrency Trend Prediction Through Hybrid Deep Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1