Conditional similarity triplets enable covariate-informed representations of single-cell data.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2025-02-09 DOI:10.1186/s12859-025-06069-5
Chi-Jane Chen, Haidong Yi, Natalie Stanley
{"title":"Conditional similarity triplets enable covariate-informed representations of single-cell data.","authors":"Chi-Jane Chen, Haidong Yi, Natalie Stanley","doi":"10.1186/s12859-025-06069-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single-cell technologies enable comprehensive profiling of diverse immune cell-types through the measurement of multiple genes or proteins per individual cell. In order to translate immune signatures assayed from blood or tissue into powerful diagnostics, machine learning approaches are often employed to compute immunological summaries or per-sample featurizations, which can be used as inputs to models for outcomes of interest. Current supervised learning approaches for computing per-sample representations are trained only to accurately predict a single outcome and do not take into account relevant additional clinical features or covariates that are likely to also be measured for each sample.</p><p><strong>Results: </strong>Here, we introduce a novel approach for incorporating measured covariates in optimizing model parameters to ultimately specify per-sample encodings that accurately affect both immune signatures and additional clinical information. Our introduced method CytoCoSet is a set-based encoding method for learning per-sample featurizations, which formulates a loss function with an additional triplet term penalizing samples with similar covariates from having disparate embedding results in per-sample representations.</p><p><strong>Conclusions: </strong>Overall, incorporating clinical covariates enables the learning of encodings for each individual sample that ultimately improve prediction of clinical outcome. This integration of information disparate more robust predictions of clinical phenotypes and holds significant potential for enhancing diagnostic and treatment strategies.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"45"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06069-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Single-cell technologies enable comprehensive profiling of diverse immune cell-types through the measurement of multiple genes or proteins per individual cell. In order to translate immune signatures assayed from blood or tissue into powerful diagnostics, machine learning approaches are often employed to compute immunological summaries or per-sample featurizations, which can be used as inputs to models for outcomes of interest. Current supervised learning approaches for computing per-sample representations are trained only to accurately predict a single outcome and do not take into account relevant additional clinical features or covariates that are likely to also be measured for each sample.

Results: Here, we introduce a novel approach for incorporating measured covariates in optimizing model parameters to ultimately specify per-sample encodings that accurately affect both immune signatures and additional clinical information. Our introduced method CytoCoSet is a set-based encoding method for learning per-sample featurizations, which formulates a loss function with an additional triplet term penalizing samples with similar covariates from having disparate embedding results in per-sample representations.

Conclusions: Overall, incorporating clinical covariates enables the learning of encodings for each individual sample that ultimately improve prediction of clinical outcome. This integration of information disparate more robust predictions of clinical phenotypes and holds significant potential for enhancing diagnostic and treatment strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Conditional similarity triplets enable covariate-informed representations of single-cell data. TockyPrep: data preprocessing methods for flow cytometric fluorescent timer analysis. Correction: HISS: Snakemake-based workflows for performing SMRT-RenSeq assembly, AgRenSeq and dRenSeq for the discovery of novel plant disease resistance genes. Direct coupling analysis and the attention mechanism. Instance-level semantic segmentation of nuclei based on multimodal structure encoding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1