A multifunctional biomimetic double-layer composite hydrogel with wet adhesion and antioxidant activity for dural repair.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Biomaterials Science, Polymer Edition Pub Date : 2025-02-10 DOI:10.1080/09205063.2025.2460373
Shui Guan, Chang Sun, Chuzhou Wen, Bing Yao, Jianqiang Xu, Changkai Sun
{"title":"A multifunctional biomimetic double-layer composite hydrogel with wet adhesion and antioxidant activity for dural repair.","authors":"Shui Guan, Chang Sun, Chuzhou Wen, Bing Yao, Jianqiang Xu, Changkai Sun","doi":"10.1080/09205063.2025.2460373","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebrospinal fluid (CSF) leakage caused by accidents or diseases resulting from traumatic brain injury, inflammation, tumor erosion and surgery can lead to many complications. In this study, a multifunctional composite double-layer hydrogel was designed by simulating the structure of native dura mater, which was composed of polyacrylic acid (PAA), polyethyleneimine (PEI), sodium alginate (SA), β-cyclodextrin (β-CD) and edaravone (Ed). The PAA/PEI layer had strong wet adhesion characteristics, while the PEI/SA@β-CD/Ed layer exhibited significant antioxidant, drug release and biocompatibility properties. By controlling the concentration of Ca<sup>2+</sup>, the gelation time can be adjusted rapidly within 95-215 s. Specifically, the final PAA/PEI/SA@β-CD/Ed composite hydrogel exhibited a porous network structure with high porosity and low swelling rate, improved tensile strength, sufficient biodegradability, favourable adhesion performance, enhanced DPPH and ABTS radicals scavenging abilities, and sustained Ed release capacity. In addition, the resulting hydrogel also showed excellent biocompatibility and protective effect on H<sub>2</sub>O<sub>2</sub>-induced oxidative damage in SH-SY5Y cells. These results preliminarily suggested that the PAA/PEI/SA@β-CD/Ed composite hydrogel would appear to be a promising candidate for dural repair.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-22"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2460373","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cerebrospinal fluid (CSF) leakage caused by accidents or diseases resulting from traumatic brain injury, inflammation, tumor erosion and surgery can lead to many complications. In this study, a multifunctional composite double-layer hydrogel was designed by simulating the structure of native dura mater, which was composed of polyacrylic acid (PAA), polyethyleneimine (PEI), sodium alginate (SA), β-cyclodextrin (β-CD) and edaravone (Ed). The PAA/PEI layer had strong wet adhesion characteristics, while the PEI/SA@β-CD/Ed layer exhibited significant antioxidant, drug release and biocompatibility properties. By controlling the concentration of Ca2+, the gelation time can be adjusted rapidly within 95-215 s. Specifically, the final PAA/PEI/SA@β-CD/Ed composite hydrogel exhibited a porous network structure with high porosity and low swelling rate, improved tensile strength, sufficient biodegradability, favourable adhesion performance, enhanced DPPH and ABTS radicals scavenging abilities, and sustained Ed release capacity. In addition, the resulting hydrogel also showed excellent biocompatibility and protective effect on H2O2-induced oxidative damage in SH-SY5Y cells. These results preliminarily suggested that the PAA/PEI/SA@β-CD/Ed composite hydrogel would appear to be a promising candidate for dural repair.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
期刊最新文献
An update on implication of POSS-based nanocomposites in bone tissue engineering: a review. Silk fibroin thermosensitive polymers: Osteogenic, anti-inflammatory, and angiogenic effects for osteomyelitis treatment. A multifunctional biomimetic double-layer composite hydrogel with wet adhesion and antioxidant activity for dural repair. Near-infrared photothermal silk fibroin/polydopamine nanospheres with incorporated silver nanoparticles for efficient antibacterial application. Enhancing Bone Grafts: Unveiling the Degradation Behaviour of Poly (lactic‑co‑glycolic acid) ‑ Calcium Composites for Advanced Bone Repair.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1