An update on implication of POSS-based nanocomposites in bone tissue engineering: a review.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Biomaterials Science, Polymer Edition Pub Date : 2025-02-18 DOI:10.1080/09205063.2025.2455234
Leyla Bagheri, Davoud Jafari-Gharabaghlou, Mohammad-Reza Dashti, Nosratollah Zarghami
{"title":"An update on implication of POSS-based nanocomposites in bone tissue engineering: a review.","authors":"Leyla Bagheri, Davoud Jafari-Gharabaghlou, Mohammad-Reza Dashti, Nosratollah Zarghami","doi":"10.1080/09205063.2025.2455234","DOIUrl":null,"url":null,"abstract":"<p><p>The science of Bone tissue engineering (TE) is quickly progressing. Engineering bone usually applications a synthetic extracellular matrix, cells or osteoblasts that can convert to osteoblasts, and adjusting causes that boost adhesion, distinction, and mineralized bone construction of cells. Extremely porous scaffolds perform an important character in cell planting, propagation, and fresh 3D-tissue construction. Reformative medicine and tissue engineering track a multi-disciplinary approach for the novel substances' development and appliance, to the various tissue defects therapy. The presentation of polyhedral oligomeric silsesquioxane (POSS) in the bio-polymeric scaffold has been shown to develop the biotic attributes of the hybrid combinations. This review focuses on the influence of POSS within the Chitosan (CS), Hydroxyapatite (HA), and zeolite matrixes, scaffold drawing, and the advantages and limitations of the materials mentioned for tissue engineering of bone.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-24"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2455234","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The science of Bone tissue engineering (TE) is quickly progressing. Engineering bone usually applications a synthetic extracellular matrix, cells or osteoblasts that can convert to osteoblasts, and adjusting causes that boost adhesion, distinction, and mineralized bone construction of cells. Extremely porous scaffolds perform an important character in cell planting, propagation, and fresh 3D-tissue construction. Reformative medicine and tissue engineering track a multi-disciplinary approach for the novel substances' development and appliance, to the various tissue defects therapy. The presentation of polyhedral oligomeric silsesquioxane (POSS) in the bio-polymeric scaffold has been shown to develop the biotic attributes of the hybrid combinations. This review focuses on the influence of POSS within the Chitosan (CS), Hydroxyapatite (HA), and zeolite matrixes, scaffold drawing, and the advantages and limitations of the materials mentioned for tissue engineering of bone.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
期刊最新文献
An update on implication of POSS-based nanocomposites in bone tissue engineering: a review. Silk fibroin thermosensitive polymers: Osteogenic, anti-inflammatory, and angiogenic effects for osteomyelitis treatment. A multifunctional biomimetic double-layer composite hydrogel with wet adhesion and antioxidant activity for dural repair. Near-infrared photothermal silk fibroin/polydopamine nanospheres with incorporated silver nanoparticles for efficient antibacterial application. Enhancing Bone Grafts: Unveiling the Degradation Behaviour of Poly (lactic‑co‑glycolic acid) ‑ Calcium Composites for Advanced Bone Repair.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1