A novel method for early prediction of sudden cardiac death through nonlinear feature extraction from ECG signals.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2025-02-10 DOI:10.1007/s13246-025-01517-1
Fatemeh Danesh Jablo, Hamed Danandeh Hesar
{"title":"A novel method for early prediction of sudden cardiac death through nonlinear feature extraction from ECG signals.","authors":"Fatemeh Danesh Jablo, Hamed Danandeh Hesar","doi":"10.1007/s13246-025-01517-1","DOIUrl":null,"url":null,"abstract":"<p><p>Sudden cardiac death (SCD) is a critical cardiovascular issue affecting approximately 3 million individuals globally each year, often occurring without prior noticeable symptoms. While the precise etiology of SCD remains elusive, ventricular fibrillation is believed to play a pivotal role in its pathophysiology. Given that symptoms typically manifest only an hour before the event, timely prediction is crucial for effective cardiac resuscitation. This study aims to predict SCD using time-frequency analysis of ECG signals. We utilized two online datasets: the Sudden Cardiac Death Holter dataset and the MIT-BIH Normal Sinus Rhythm dataset. Our proposed method involves segmenting the 60-min interval preceding ventricular fibrillation into one-minute segments, which are then decomposed into time-frequency sub-bands using empirical mode decomposition (EMD). Nonlinear features are extracted from these decomposed signals, followed by classification using support vector machines (SVM) and K-nearest neighbors (KNN) algorithms. To enhance classification accuracy, we employed two statistical feature selection techniques: T-test and ANOVA. Results indicate that using the ANOVA feature selection method in conjunction with SVM and KNN algorithms achieves high accuracy in predicting SCD. Specifically, the average accuracy rates for the 60 min preceding SCD were 93.51% for ANOVA-SVM and 93% for ANOVA-KNN. With T-test feature selection, the average accuracy rates were 93.29% for SVM and 93.41% for KNN. These findings demonstrate the promising performance of our proposed approach in predicting SCD, potentially contributing to improved early intervention strategies and patient outcomes.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01517-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sudden cardiac death (SCD) is a critical cardiovascular issue affecting approximately 3 million individuals globally each year, often occurring without prior noticeable symptoms. While the precise etiology of SCD remains elusive, ventricular fibrillation is believed to play a pivotal role in its pathophysiology. Given that symptoms typically manifest only an hour before the event, timely prediction is crucial for effective cardiac resuscitation. This study aims to predict SCD using time-frequency analysis of ECG signals. We utilized two online datasets: the Sudden Cardiac Death Holter dataset and the MIT-BIH Normal Sinus Rhythm dataset. Our proposed method involves segmenting the 60-min interval preceding ventricular fibrillation into one-minute segments, which are then decomposed into time-frequency sub-bands using empirical mode decomposition (EMD). Nonlinear features are extracted from these decomposed signals, followed by classification using support vector machines (SVM) and K-nearest neighbors (KNN) algorithms. To enhance classification accuracy, we employed two statistical feature selection techniques: T-test and ANOVA. Results indicate that using the ANOVA feature selection method in conjunction with SVM and KNN algorithms achieves high accuracy in predicting SCD. Specifically, the average accuracy rates for the 60 min preceding SCD were 93.51% for ANOVA-SVM and 93% for ANOVA-KNN. With T-test feature selection, the average accuracy rates were 93.29% for SVM and 93.41% for KNN. These findings demonstrate the promising performance of our proposed approach in predicting SCD, potentially contributing to improved early intervention strategies and patient outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
A novel method for early prediction of sudden cardiac death through nonlinear feature extraction from ECG signals. Towards ultra-low-dose CT for detecting pulmonary nodules using DenseNet. Correction to: Transfer learning and self-distillation for automated detection of schizophrenia using single-channel EEG and scalogram images. A new HCM heart sound classification method based on weighted bispectrum features. Estimation of dose to a bystander from F-18 FDG patients using Monte Carlo simulation in clinical exposure scenarios.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1