Towards ultra-low-dose CT for detecting pulmonary nodules using DenseNet.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2025-02-10 DOI:10.1007/s13246-025-01520-6
Ching-Ching Yang
{"title":"Towards ultra-low-dose CT for detecting pulmonary nodules using DenseNet.","authors":"Ching-Ching Yang","doi":"10.1007/s13246-025-01520-6","DOIUrl":null,"url":null,"abstract":"<p><p>Low-radiation techniques should be used to detect and follow lung nodules on CT images, but reducing radiation dose to ultra-low-dose CT with submilliSievert dose level would drastically impede image quality and sensitivity for nodule detection. This study investigated the feasibility of using DenseNet to suppress image noise in ultra-low-dose CT for lung cancer screening. DenseNet was trained using input-label pairs from 1, 2, 4, and 6 patients. After training, the model was tested with chest CT from 14 patients that were not used in training process. Seven patients have solid nodules and 7 patients have subsolid nodules. Root mean square error (RMSE) and peak signal-to-noise ratio (PSNR) were calculated to quantify the difference between reference and test images. The contrast-to-noise ratio (CNR) between lung nodule and lung parenchyma was calculated to evaluate the target detectability of chest CT. Subjective image quality assessment was performed using 4-point ranking scale to evaluate the visual quality of CT images perceived by end user. Substantial improvements in RMSE and PSNR were observed after denoising. The lung nodules in denoised images could be distinguished more easily in comparison with those in the original ultra-low-dose CT, which is supported by the CNRs and subjective image quality scores. The comparison of intensity profiles for lung nodules demonstrated that the image noise in ultra-low-dose CT could be suppressed effectively after denoising without causing edge blurring or variation in Hounsfield unit (HU) values. A two-sample t-test revealed no statistically significant differences between full-dose CT and denoised ultra-low-dose CT in the evaluation of lung nodules, lung parenchyma, paraspinal muscle, or vertebral body. Since the linear no-threshold model suggests that no amount of ionizing radiation is entirely risk-free, the quest for further dose reduction remains a consistently important focus in radiology. Overall, our findings suggest that DenseNet could be a viable approach for reducing image noise in ultra-low-dose CT scans used for lung cancer screening.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01520-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Low-radiation techniques should be used to detect and follow lung nodules on CT images, but reducing radiation dose to ultra-low-dose CT with submilliSievert dose level would drastically impede image quality and sensitivity for nodule detection. This study investigated the feasibility of using DenseNet to suppress image noise in ultra-low-dose CT for lung cancer screening. DenseNet was trained using input-label pairs from 1, 2, 4, and 6 patients. After training, the model was tested with chest CT from 14 patients that were not used in training process. Seven patients have solid nodules and 7 patients have subsolid nodules. Root mean square error (RMSE) and peak signal-to-noise ratio (PSNR) were calculated to quantify the difference between reference and test images. The contrast-to-noise ratio (CNR) between lung nodule and lung parenchyma was calculated to evaluate the target detectability of chest CT. Subjective image quality assessment was performed using 4-point ranking scale to evaluate the visual quality of CT images perceived by end user. Substantial improvements in RMSE and PSNR were observed after denoising. The lung nodules in denoised images could be distinguished more easily in comparison with those in the original ultra-low-dose CT, which is supported by the CNRs and subjective image quality scores. The comparison of intensity profiles for lung nodules demonstrated that the image noise in ultra-low-dose CT could be suppressed effectively after denoising without causing edge blurring or variation in Hounsfield unit (HU) values. A two-sample t-test revealed no statistically significant differences between full-dose CT and denoised ultra-low-dose CT in the evaluation of lung nodules, lung parenchyma, paraspinal muscle, or vertebral body. Since the linear no-threshold model suggests that no amount of ionizing radiation is entirely risk-free, the quest for further dose reduction remains a consistently important focus in radiology. Overall, our findings suggest that DenseNet could be a viable approach for reducing image noise in ultra-low-dose CT scans used for lung cancer screening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
A novel method for early prediction of sudden cardiac death through nonlinear feature extraction from ECG signals. Towards ultra-low-dose CT for detecting pulmonary nodules using DenseNet. Correction to: Transfer learning and self-distillation for automated detection of schizophrenia using single-channel EEG and scalogram images. A new HCM heart sound classification method based on weighted bispectrum features. Estimation of dose to a bystander from F-18 FDG patients using Monte Carlo simulation in clinical exposure scenarios.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1