Exploring the Complex Heliotail Boundary by an Extended Level Set Approach

C. Onubogu, M. Opher, M. Kornbleuth, G. Tóth and V. Florinski
{"title":"Exploring the Complex Heliotail Boundary by an Extended Level Set Approach","authors":"C. Onubogu, M. Opher, M. Kornbleuth, G. Tóth and V. Florinski","doi":"10.3847/2041-8213/ada68e","DOIUrl":null,"url":null,"abstract":"There is an ongoing debate regarding the shape of the heliotail. Studies have shown that the heliotail may be “comet-like,” extending for thousands of au. Some previous works defined the heliopause using magnetohydrodynamic variables, which only serve as an approximation to capture the heliopause in all directions. Here we use a level set method in our heliospheric model to constrain the location of the heliopause. The level set function, fHP, is defined by boundary conditions, having a value of +1 at the inner boundary and −1 at the outer boundary. We find that the fHP = 0 criterion, the standard heliopause definition used by other models to determine where solar wind and interstellar plasma meet, is impacted in the heliotail, where there is a broad mixing region of solar wind and interstellar medium plasma, by the nature of turbulent flows in the heliotail. We explore a different isosurface, defined by fHP = 0.99, where the interface is composed of 99.5% solar wind and 0.50% interstellar medium. This determines the limits of the heliosphere by the region of solar wind flow that is minimally influenced by the interstellar flow. This region also contains magnetic field lines with at least one end anchored to the Sun. We obtain a split heliotail structure using the fHP = 0.99 criterion.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ada68e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is an ongoing debate regarding the shape of the heliotail. Studies have shown that the heliotail may be “comet-like,” extending for thousands of au. Some previous works defined the heliopause using magnetohydrodynamic variables, which only serve as an approximation to capture the heliopause in all directions. Here we use a level set method in our heliospheric model to constrain the location of the heliopause. The level set function, fHP, is defined by boundary conditions, having a value of +1 at the inner boundary and −1 at the outer boundary. We find that the fHP = 0 criterion, the standard heliopause definition used by other models to determine where solar wind and interstellar plasma meet, is impacted in the heliotail, where there is a broad mixing region of solar wind and interstellar medium plasma, by the nature of turbulent flows in the heliotail. We explore a different isosurface, defined by fHP = 0.99, where the interface is composed of 99.5% solar wind and 0.50% interstellar medium. This determines the limits of the heliosphere by the region of solar wind flow that is minimally influenced by the interstellar flow. This region also contains magnetic field lines with at least one end anchored to the Sun. We obtain a split heliotail structure using the fHP = 0.99 criterion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Complex Heliotail Boundary by an Extended Level Set Approach Investigating the CREDIT History of Supernova Remnants as Cosmic-Ray Sources Rates of Stellar Tidal Disruption Events around Intermediate-mass Black Holes Laboratory Rotational Spectroscopy Leads to the First Interstellar Detection of Singly Deuterated Methyl Mercaptan (CH2DSH) A Study on the Line of Sight to Galaxies Detected at Gamma-Ray Energies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1