A Study on the Line of Sight to Galaxies Detected at Gamma-Ray Energies

Amy Furniss, Josepf N. Amador, Olivier Hervet, Ollie Jackson and David A. Williams
{"title":"A Study on the Line of Sight to Galaxies Detected at Gamma-Ray Energies","authors":"Amy Furniss, Josepf N. Amador, Olivier Hervet, Ollie Jackson and David A. Williams","doi":"10.3847/2041-8213/adae9d","DOIUrl":null,"url":null,"abstract":"The large-scale universal structure comprises strands of dark matter and galaxies with large underdense volumes known as voids. We measure the fraction of the line of sight that intersects voids for active galactic nuclei (AGN) detected by Fermi Large Area Telescope (LAT) and quasars from the Sloan Digital Sky Survey (SDSS). This “voidiness” fraction is a rudimentary proxy for the density along the line of sight to the galaxies. The voidiness of SDSS-observed quasars (QSOs) is distinctly different from randomly distributed source populations, with a median p-value of 4.6 × 10−5 and ≪1 × 10−7, when compared with 500 simulated populations with randomly simulated locations but matching redshifts in the 0.1 ≤ z < 0.4 and 0.4 ≤ z < 0.7 intervals, respectively. A similar comparison of the voidiness for LAT-detected AGN shows median p-values greater than 0.05 in each redshift interval. When comparing the SDSS QSO population to the LAT-detected AGN, we mitigate potential bias from a relationship between redshift and voidiness by comparing the LAT-detected AGN to a “redshift-matched” set of SDSS QSOs. The LAT-detected AGN between a redshift of 0.4 and 0.7 show higher voidiness compared to the redshift-matched SDSS QSO populations, with a median p-value of 2.3 × 10−5 (a 4.1σ deviation). No deviation is found when comparing the same populations between redshifts of 0.1 and 0.4 (p > 0.05). We do not study possible causes of this voidiness difference. It might relate to propagation effects from lower magnetic or radiative background fields within voids or to an environment more favorable for gamma-ray production for AGN near voids.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adae9d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The large-scale universal structure comprises strands of dark matter and galaxies with large underdense volumes known as voids. We measure the fraction of the line of sight that intersects voids for active galactic nuclei (AGN) detected by Fermi Large Area Telescope (LAT) and quasars from the Sloan Digital Sky Survey (SDSS). This “voidiness” fraction is a rudimentary proxy for the density along the line of sight to the galaxies. The voidiness of SDSS-observed quasars (QSOs) is distinctly different from randomly distributed source populations, with a median p-value of 4.6 × 10−5 and ≪1 × 10−7, when compared with 500 simulated populations with randomly simulated locations but matching redshifts in the 0.1 ≤ z < 0.4 and 0.4 ≤ z < 0.7 intervals, respectively. A similar comparison of the voidiness for LAT-detected AGN shows median p-values greater than 0.05 in each redshift interval. When comparing the SDSS QSO population to the LAT-detected AGN, we mitigate potential bias from a relationship between redshift and voidiness by comparing the LAT-detected AGN to a “redshift-matched” set of SDSS QSOs. The LAT-detected AGN between a redshift of 0.4 and 0.7 show higher voidiness compared to the redshift-matched SDSS QSO populations, with a median p-value of 2.3 × 10−5 (a 4.1σ deviation). No deviation is found when comparing the same populations between redshifts of 0.1 and 0.4 (p > 0.05). We do not study possible causes of this voidiness difference. It might relate to propagation effects from lower magnetic or radiative background fields within voids or to an environment more favorable for gamma-ray production for AGN near voids.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Complex Heliotail Boundary by an Extended Level Set Approach Investigating the CREDIT History of Supernova Remnants as Cosmic-Ray Sources Rates of Stellar Tidal Disruption Events around Intermediate-mass Black Holes Laboratory Rotational Spectroscopy Leads to the First Interstellar Detection of Singly Deuterated Methyl Mercaptan (CH2DSH) A Study on the Line of Sight to Galaxies Detected at Gamma-Ray Energies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1