Investigating the CREDIT History of Supernova Remnants as Cosmic-Ray Sources

Anton Stall, Chun Khai Loo and Philipp Mertsch
{"title":"Investigating the CREDIT History of Supernova Remnants as Cosmic-Ray Sources","authors":"Anton Stall, Chun Khai Loo and Philipp Mertsch","doi":"10.3847/2041-8213/adaea8","DOIUrl":null,"url":null,"abstract":"Supernova remnants (SNRs) have long been suspected to be the primary sources of Galactic cosmic rays. Over the past decades, great strides have been made in the modeling of particle acceleration, magnetic field amplification, and escape from SNRs. Yet while many SNRs have been observed in nonthermal emission in radio, X-rays, and gamma rays, there is no evidence for any individual object contributing to the locally observed flux. Here, we propose a particular spectral signature from individual remnants that is due to the energy-dependent escape from SNRs. For young and nearby sources, we predict fluxes enhanced by tens of percent in narrow rigidity intervals; given the percent-level flux uncertainties of contemporary cosmic-ray data, such features should be readily detectable. We model the spatial and temporal distribution of sources and the resulting distribution of fluxes with a Monte Carlo approach. The decision tree that we have trained on simulated data is able to discriminate with very high significance between the null hypothesis of a smooth distribution of sources and the scenario with a stochastic distribution of individual sources. We suggest that this cosmic-ray energy-dependent injection time (CREDIT) scenario be considered in experimental searches to identify individual SNRs as cosmic-ray sources.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adaea8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supernova remnants (SNRs) have long been suspected to be the primary sources of Galactic cosmic rays. Over the past decades, great strides have been made in the modeling of particle acceleration, magnetic field amplification, and escape from SNRs. Yet while many SNRs have been observed in nonthermal emission in radio, X-rays, and gamma rays, there is no evidence for any individual object contributing to the locally observed flux. Here, we propose a particular spectral signature from individual remnants that is due to the energy-dependent escape from SNRs. For young and nearby sources, we predict fluxes enhanced by tens of percent in narrow rigidity intervals; given the percent-level flux uncertainties of contemporary cosmic-ray data, such features should be readily detectable. We model the spatial and temporal distribution of sources and the resulting distribution of fluxes with a Monte Carlo approach. The decision tree that we have trained on simulated data is able to discriminate with very high significance between the null hypothesis of a smooth distribution of sources and the scenario with a stochastic distribution of individual sources. We suggest that this cosmic-ray energy-dependent injection time (CREDIT) scenario be considered in experimental searches to identify individual SNRs as cosmic-ray sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Complex Heliotail Boundary by an Extended Level Set Approach Investigating the CREDIT History of Supernova Remnants as Cosmic-Ray Sources Rates of Stellar Tidal Disruption Events around Intermediate-mass Black Holes Laboratory Rotational Spectroscopy Leads to the First Interstellar Detection of Singly Deuterated Methyl Mercaptan (CH2DSH) A Study on the Line of Sight to Galaxies Detected at Gamma-Ray Energies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1