Dynamic integration of feature- and template-based methods improves the prediction of conformational B cell epitopes

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Structure Pub Date : 2025-02-11 DOI:10.1016/j.str.2025.01.018
Yueyue Shen, Zheng Jiang, Rong Liu
{"title":"Dynamic integration of feature- and template-based methods improves the prediction of conformational B cell epitopes","authors":"Yueyue Shen, Zheng Jiang, Rong Liu","doi":"10.1016/j.str.2025.01.018","DOIUrl":null,"url":null,"abstract":"The accurate prediction of conformational epitopes promotes our understanding of antigen-antibody interactions. All existing algorithms depend on a feature-based strategy, which limits their performance. A template-based strategy can provide complementary information, and the interplay between these two strategies could improve the prediction of epitopes. Here, we present DynaBCE, a dynamic ensemble algorithm to effectively identify conformational B cell epitopes (BCEs). Using novel handcrafted structural descriptors and embeddings from protein language models, we developed machine learning and deep learning modules based on boosting algorithms and geometric graph neural networks, respectively. Furthermore, we built a template module by leveraging known structural template information and transformer-based algorithms to capture binding signatures. Finally, we integrated the three modules using a dynamic weighting approach to maximize the strength of each module for different samples. DynaBCE achieved promising results for both native and predicted structures and outperformed previous methods as demonstrated in various evaluation scenarios.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"28 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.01.018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate prediction of conformational epitopes promotes our understanding of antigen-antibody interactions. All existing algorithms depend on a feature-based strategy, which limits their performance. A template-based strategy can provide complementary information, and the interplay between these two strategies could improve the prediction of epitopes. Here, we present DynaBCE, a dynamic ensemble algorithm to effectively identify conformational B cell epitopes (BCEs). Using novel handcrafted structural descriptors and embeddings from protein language models, we developed machine learning and deep learning modules based on boosting algorithms and geometric graph neural networks, respectively. Furthermore, we built a template module by leveraging known structural template information and transformer-based algorithms to capture binding signatures. Finally, we integrated the three modules using a dynamic weighting approach to maximize the strength of each module for different samples. DynaBCE achieved promising results for both native and predicted structures and outperformed previous methods as demonstrated in various evaluation scenarios.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Structure
Structure 生物-生化与分子生物学
CiteScore
8.90
自引率
1.80%
发文量
155
审稿时长
3-8 weeks
期刊介绍: Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome. In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.
期刊最新文献
Dynamic integration of feature- and template-based methods improves the prediction of conformational B cell epitopes Unique mechanisms to increase structural stability and enhance antigen binding in nanobodies Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering Illuminating cholesterol-mTORC1 signaling: LYCHOS in focus CryoVIA: An image analysis toolkit for the quantification of membrane structures from cryo-EM micrographs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1