Tomás Nicolás-García, Natalia Martín Sabanés, Rebeca Bocanegra, R. Dean Astumian, Emilio M. Pérez, Borja Ibarra
{"title":"Transition-path times of individual molecular shuttles under mechanical equilibrium show symmetry","authors":"Tomás Nicolás-García, Natalia Martín Sabanés, Rebeca Bocanegra, R. Dean Astumian, Emilio M. Pérez, Borja Ibarra","doi":"10.1016/j.chempr.2024.102410","DOIUrl":null,"url":null,"abstract":"Measuring individual trajectories during the operation of synthetic devices is crucial for a thorough understanding of this operation. Here, we use optical tweezers to measure individual transition paths of molecular shuttles under mechanical equilibrium. Our results showed that the transition-path times present wide distributions, indicating a statistically independent and variable behavior while maintaining a time-reversal symmetry derived from the principle of microscopic reversibility. Furthermore, we show that thermodynamic variables can be extracted from the transition-path times using the principle of microscopic reversibility. These measurements provide a first experimental look at the principle of microscopic reversibility in molecular shuttles and pave the way for a detailed and quantitative understanding of the dynamics of synthetic molecular machines.","PeriodicalId":268,"journal":{"name":"Chem","volume":"52 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.102410","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring individual trajectories during the operation of synthetic devices is crucial for a thorough understanding of this operation. Here, we use optical tweezers to measure individual transition paths of molecular shuttles under mechanical equilibrium. Our results showed that the transition-path times present wide distributions, indicating a statistically independent and variable behavior while maintaining a time-reversal symmetry derived from the principle of microscopic reversibility. Furthermore, we show that thermodynamic variables can be extracted from the transition-path times using the principle of microscopic reversibility. These measurements provide a first experimental look at the principle of microscopic reversibility in molecular shuttles and pave the way for a detailed and quantitative understanding of the dynamics of synthetic molecular machines.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.