Georg Arnold, Thomas Werner, Rishabh Sahu, Lucky N. Kapoor, Liu Qiu, Johannes M. Fink
{"title":"All-optical superconducting qubit readout","authors":"Georg Arnold, Thomas Werner, Rishabh Sahu, Lucky N. Kapoor, Liu Qiu, Johannes M. Fink","doi":"10.1038/s41567-024-02741-4","DOIUrl":null,"url":null,"abstract":"<p>The rapid development of superconducting quantum hardware is expected to run into substantial restrictions on scalability because error correction in a cryogenic environment has stringent input–output requirements. Classical data centres rely on fibre-optic interconnects to remove similar networking bottlenecks. In the same spirit, ultracold electro-optic links have been proposed and used to generate qubit control signals, or to replace cryogenic readout electronics. So far, these approaches have suffered from either low efficiency, low bandwidth or additional noise. Here we realize radio-over-fibre qubit readout at millikelvin temperatures. We use one device to simultaneously perform upconversion and downconversion between microwave and optical frequencies and so do not require any active or passive cryogenic microwave equipment. We demonstrate all-optical single-shot readout in a circulator-free readout scheme. Importantly, we do not observe any direct radiation impact on the qubit state, despite the absence of shielding elements. This compatibility between superconducting circuits and telecom-wavelength light is not only a prerequisite to establish modular quantum networks, but it is also relevant for multiplexed readout of superconducting photon detectors and classical superconducting logic.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"62 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02741-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of superconducting quantum hardware is expected to run into substantial restrictions on scalability because error correction in a cryogenic environment has stringent input–output requirements. Classical data centres rely on fibre-optic interconnects to remove similar networking bottlenecks. In the same spirit, ultracold electro-optic links have been proposed and used to generate qubit control signals, or to replace cryogenic readout electronics. So far, these approaches have suffered from either low efficiency, low bandwidth or additional noise. Here we realize radio-over-fibre qubit readout at millikelvin temperatures. We use one device to simultaneously perform upconversion and downconversion between microwave and optical frequencies and so do not require any active or passive cryogenic microwave equipment. We demonstrate all-optical single-shot readout in a circulator-free readout scheme. Importantly, we do not observe any direct radiation impact on the qubit state, despite the absence of shielding elements. This compatibility between superconducting circuits and telecom-wavelength light is not only a prerequisite to establish modular quantum networks, but it is also relevant for multiplexed readout of superconducting photon detectors and classical superconducting logic.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.