Borophene: The Frontier of Next-Generation Sensor Applications

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL ACS Sensors Pub Date : 2025-02-11 DOI:10.1021/acssensors.4c03289
Nilpawan Sarma, Hirendra Das, Pranjal Saikia
{"title":"Borophene: The Frontier of Next-Generation Sensor Applications","authors":"Nilpawan Sarma, Hirendra Das, Pranjal Saikia","doi":"10.1021/acssensors.4c03289","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) materials have captivated scientific imagination, and among this proliferating cadre of 2D compounds, borophene; a single layer of boron atoms emerges as a nonpareil substance owing to its distinctive structural, electronic, and mechanical properties. This review investigates the extraordinary properties that borophene possesses, notably in its χ<sub>3</sub> and β<sub>12</sub> phases, which add directional metallic behavior, along with quite a lot of mechanical plasticity and high carrier mobility. The synthesis of borophene has made significant strides thanks to cutting-edge techniques like molecular beam epitaxy (MBE), atomic layer deposition (ALD), and chemical vapor deposition (CVD) and physical vapor deposition (PVD), with recent innovations breaking through the scalability no-go areas that, in the past, hindered the material’s widespread use. Borophene’s superior electronic, thermal, and mechanical properties, in contrast to other 2D materials like graphene, accentuate its potential for diverse applications, particularly in the realm of next-generation sensors. It places particular emphasis on borophene’s appositeness for sensor technology, detailing the structural intricacies and unique topological characteristics that make borophene an exceptional candidate. By focusing on the mechanisms that enable its high sensitivity and flexibility, the discussion brings to light the transformative potential of this interesting 2D material while concurrently addressing the state-of-the-art advancements in borophene research, thereby providing a forward-looking perspective on future opportunities and challenges. Ultimately, this work pinpoints how borophene, with its unprecedented properties and technological promise, is poised to reshape sensor technology and opens new avenues for exploration in the broader field of advanced functional materials.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"63 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03289","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) materials have captivated scientific imagination, and among this proliferating cadre of 2D compounds, borophene; a single layer of boron atoms emerges as a nonpareil substance owing to its distinctive structural, electronic, and mechanical properties. This review investigates the extraordinary properties that borophene possesses, notably in its χ3 and β12 phases, which add directional metallic behavior, along with quite a lot of mechanical plasticity and high carrier mobility. The synthesis of borophene has made significant strides thanks to cutting-edge techniques like molecular beam epitaxy (MBE), atomic layer deposition (ALD), and chemical vapor deposition (CVD) and physical vapor deposition (PVD), with recent innovations breaking through the scalability no-go areas that, in the past, hindered the material’s widespread use. Borophene’s superior electronic, thermal, and mechanical properties, in contrast to other 2D materials like graphene, accentuate its potential for diverse applications, particularly in the realm of next-generation sensors. It places particular emphasis on borophene’s appositeness for sensor technology, detailing the structural intricacies and unique topological characteristics that make borophene an exceptional candidate. By focusing on the mechanisms that enable its high sensitivity and flexibility, the discussion brings to light the transformative potential of this interesting 2D material while concurrently addressing the state-of-the-art advancements in borophene research, thereby providing a forward-looking perspective on future opportunities and challenges. Ultimately, this work pinpoints how borophene, with its unprecedented properties and technological promise, is poised to reshape sensor technology and opens new avenues for exploration in the broader field of advanced functional materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
期刊最新文献
Highly Stretchable, Tough, and Transparent Chitin Nanofiber-Reinforced Multifunctional Eutectogels for Self-Powered Wearable Sensors Electric-Ray-Inspired Universal Island-Bridge Structure for Transforming Nonpyroelectric Substrates into Pyroelectric Sensors Borophene: The Frontier of Next-Generation Sensor Applications Construction of Guanidinium-Functionalized Covalent Organic Frameworks via Phototriggered Click Reaction as a Dual-Mode Accurate Sensor for Malondialdehyde Exploring Differential Electron Transfer Kinetics of Electrochemical Aptamer-Based Sensors to Achieve Calibration-Free Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1