A novel aging modeling approach for second-life lithium-ion batteries

IF 15 1区 工程技术 Q1 ENERGY & FUELS Etransportation Pub Date : 2025-02-10 DOI:10.1016/j.etran.2025.100400
Ane Pérez, Idoia San Martín, Pablo Sanchis, Alfredo Ursúa
{"title":"A novel aging modeling approach for second-life lithium-ion batteries","authors":"Ane Pérez,&nbsp;Idoia San Martín,&nbsp;Pablo Sanchis,&nbsp;Alfredo Ursúa","doi":"10.1016/j.etran.2025.100400","DOIUrl":null,"url":null,"abstract":"<div><div>The electric mobility industry is booming. In order to reduce the environmental impact of this boom, there is the potential to reuse the batteries from electric vehicles. However, the technical and economic feasibility of the second-life of lithium-ion batteries remains in question. This is due to the intricate non-linear mechanisms that occur during battery degradation, leading to capacity and power loss. Ongoing research aims to create models that can predict the state of battery degradation. However, most studies have focused on the battery’s first life, operating within a limited state of health range and requiring constant monitoring of the battery’s exposure conditions. While these models provide satisfactory results for the battery’s performance in vehicles, they cannot be directly applied to second-life scenarios. In response to this issue, this article proposes a degradation modeling method for second-life batteries based on identifying and linearizing different degradation trends within the battery. This approach allows the application of the model without prior knowledge of the battery’s history. It has been validated for a state of health range of 95% to 20%, through both conventional charge-discharge tests and a real-world scenario involving a smart charging station for urban buses. The results obtained with the developed model are overall satisfactory, achieving a MAPE below 3% for capacity and 1.4% for internal resistance in the real-world scenario.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"24 ","pages":"Article 100400"},"PeriodicalIF":15.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116825000074","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The electric mobility industry is booming. In order to reduce the environmental impact of this boom, there is the potential to reuse the batteries from electric vehicles. However, the technical and economic feasibility of the second-life of lithium-ion batteries remains in question. This is due to the intricate non-linear mechanisms that occur during battery degradation, leading to capacity and power loss. Ongoing research aims to create models that can predict the state of battery degradation. However, most studies have focused on the battery’s first life, operating within a limited state of health range and requiring constant monitoring of the battery’s exposure conditions. While these models provide satisfactory results for the battery’s performance in vehicles, they cannot be directly applied to second-life scenarios. In response to this issue, this article proposes a degradation modeling method for second-life batteries based on identifying and linearizing different degradation trends within the battery. This approach allows the application of the model without prior knowledge of the battery’s history. It has been validated for a state of health range of 95% to 20%, through both conventional charge-discharge tests and a real-world scenario involving a smart charging station for urban buses. The results obtained with the developed model are overall satisfactory, achieving a MAPE below 3% for capacity and 1.4% for internal resistance in the real-world scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Etransportation
Etransportation Engineering-Automotive Engineering
CiteScore
19.80
自引率
12.60%
发文量
57
审稿时长
39 days
期刊介绍: eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation. The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment. Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.
期刊最新文献
A novel aging modeling approach for second-life lithium-ion batteries Advanced pulse charging strategies enhancing performances of lithium-ion battery: Fundamentals, advances and outlooks Optimizing vehicle-to-grid systems: Smart integration of shared autonomous and conventional electric vehicles Quantifying the flexibility potential of electric vehicles in buildings and determining the investment strategy for charging infrastructure Transport mechanisms analysis of large-size proton exchange membrane fuel cells with novel integrated structure under ultra-high current densities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1