Ane Pérez, Idoia San Martín, Pablo Sanchis, Alfredo Ursúa
{"title":"A novel aging modeling approach for second-life lithium-ion batteries","authors":"Ane Pérez, Idoia San Martín, Pablo Sanchis, Alfredo Ursúa","doi":"10.1016/j.etran.2025.100400","DOIUrl":null,"url":null,"abstract":"<div><div>The electric mobility industry is booming. In order to reduce the environmental impact of this boom, there is the potential to reuse the batteries from electric vehicles. However, the technical and economic feasibility of the second-life of lithium-ion batteries remains in question. This is due to the intricate non-linear mechanisms that occur during battery degradation, leading to capacity and power loss. Ongoing research aims to create models that can predict the state of battery degradation. However, most studies have focused on the battery’s first life, operating within a limited state of health range and requiring constant monitoring of the battery’s exposure conditions. While these models provide satisfactory results for the battery’s performance in vehicles, they cannot be directly applied to second-life scenarios. In response to this issue, this article proposes a degradation modeling method for second-life batteries based on identifying and linearizing different degradation trends within the battery. This approach allows the application of the model without prior knowledge of the battery’s history. It has been validated for a state of health range of 95% to 20%, through both conventional charge-discharge tests and a real-world scenario involving a smart charging station for urban buses. The results obtained with the developed model are overall satisfactory, achieving a MAPE below 3% for capacity and 1.4% for internal resistance in the real-world scenario.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"24 ","pages":"Article 100400"},"PeriodicalIF":15.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116825000074","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The electric mobility industry is booming. In order to reduce the environmental impact of this boom, there is the potential to reuse the batteries from electric vehicles. However, the technical and economic feasibility of the second-life of lithium-ion batteries remains in question. This is due to the intricate non-linear mechanisms that occur during battery degradation, leading to capacity and power loss. Ongoing research aims to create models that can predict the state of battery degradation. However, most studies have focused on the battery’s first life, operating within a limited state of health range and requiring constant monitoring of the battery’s exposure conditions. While these models provide satisfactory results for the battery’s performance in vehicles, they cannot be directly applied to second-life scenarios. In response to this issue, this article proposes a degradation modeling method for second-life batteries based on identifying and linearizing different degradation trends within the battery. This approach allows the application of the model without prior knowledge of the battery’s history. It has been validated for a state of health range of 95% to 20%, through both conventional charge-discharge tests and a real-world scenario involving a smart charging station for urban buses. The results obtained with the developed model are overall satisfactory, achieving a MAPE below 3% for capacity and 1.4% for internal resistance in the real-world scenario.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.