{"title":"Anisotropy engineering of Prussian blue analogue derived FeNi nanoflakes for broadband electromagnetic wave absorption","authors":"Huipeng Lv , Mi Yan , Chen Wu","doi":"10.1016/j.mtnano.2025.100589","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic alloys are indispensable for electromagnetic (EM) wave absorption with simultaneous dielectric and magnetic loss, while balancing their permittivity and permeability is challenging. Here in-plane anisotropy has been introduced via Prussian-blue analogue (PBA) derived FeNi nanoflakes and further modulated through magnetic-field orientation. The tuned anisotropy verified by COMSOL simulations gives rise to both descendant permittivity and ascendant permeability for improved impedance matching. Meanwhile, large aspect ratio and uniform distribution of the FeNi nanoflakes result in enhanced exchange resonance for raised dissipation ability of the EM energy. As such the oriented FeNi nanoflakes exhibit impressive absorption of −44.3 dB and broad bandwidth of 7.20 GHz at a small thickness of 2.00 mm as a single-component absorber. Not only this work provides a versatile PBA-template strategy to synthesize flaky magnetic alloys with small thickness and uniform shape, enhancement mechanisms via anisotropy engineering revealed by combined experimental and simulative approaches also shed light on the future design of EM functional materials.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"29 ","pages":"Article 100589"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000203","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic alloys are indispensable for electromagnetic (EM) wave absorption with simultaneous dielectric and magnetic loss, while balancing their permittivity and permeability is challenging. Here in-plane anisotropy has been introduced via Prussian-blue analogue (PBA) derived FeNi nanoflakes and further modulated through magnetic-field orientation. The tuned anisotropy verified by COMSOL simulations gives rise to both descendant permittivity and ascendant permeability for improved impedance matching. Meanwhile, large aspect ratio and uniform distribution of the FeNi nanoflakes result in enhanced exchange resonance for raised dissipation ability of the EM energy. As such the oriented FeNi nanoflakes exhibit impressive absorption of −44.3 dB and broad bandwidth of 7.20 GHz at a small thickness of 2.00 mm as a single-component absorber. Not only this work provides a versatile PBA-template strategy to synthesize flaky magnetic alloys with small thickness and uniform shape, enhancement mechanisms via anisotropy engineering revealed by combined experimental and simulative approaches also shed light on the future design of EM functional materials.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites