Multifaceted Antipathogenic Activity of Two Novel Natural Products, Chermesiterpenoid B and Chermesiterpenoid B Seco Acid Methyl Ester, Against Pseudomonas aeruginosa
Dan-Dan Li, Ying Wang, Huiyan Li, Wen-Xin Niu, Jongki Hong, Jee H. Jung, Joon-Hee Lee
{"title":"Multifaceted Antipathogenic Activity of Two Novel Natural Products, Chermesiterpenoid B and Chermesiterpenoid B Seco Acid Methyl Ester, Against Pseudomonas aeruginosa","authors":"Dan-Dan Li, Ying Wang, Huiyan Li, Wen-Xin Niu, Jongki Hong, Jee H. Jung, Joon-Hee Lee","doi":"10.1111/1751-7915.70101","DOIUrl":null,"url":null,"abstract":"<p><i>Pseudomonas aeruginosa</i> is an opportunistic human pathogen that causes both acute and chronic infections due to its virulence factors, biofilm formation and the ability to suppress the host immune system. Quorum sensing (QS) plays a key role in regulating these pathogenic traits and also downregulates the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) in host cells. In this study, we isolated two novel natural products from the jellyfish-derived fungus <i>Penicillium chermesinum</i>, chermesiterpenoid B (Che B) seco acid methyl ester (Che B ester) and Che B. Both compounds act as partial agonists of PPAR-γ and exhibit anti-QS activity. Che B ester and Che B were found to inhibit biofilm formation, reduce the production of proteases and decrease the infectivity of <i>P. aeruginosa</i>, all without affecting bacterial growth. In host cells, Che B ester and Che B reduced <i>P. aeruginosa</i>-induced inflammation by activating PPAR-γ. This multifaceted function makes these compounds promising candidates for developing new antipathogenic agents against bacterial infections with few side effects.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70101","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that causes both acute and chronic infections due to its virulence factors, biofilm formation and the ability to suppress the host immune system. Quorum sensing (QS) plays a key role in regulating these pathogenic traits and also downregulates the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) in host cells. In this study, we isolated two novel natural products from the jellyfish-derived fungus Penicillium chermesinum, chermesiterpenoid B (Che B) seco acid methyl ester (Che B ester) and Che B. Both compounds act as partial agonists of PPAR-γ and exhibit anti-QS activity. Che B ester and Che B were found to inhibit biofilm formation, reduce the production of proteases and decrease the infectivity of P. aeruginosa, all without affecting bacterial growth. In host cells, Che B ester and Che B reduced P. aeruginosa-induced inflammation by activating PPAR-γ. This multifaceted function makes these compounds promising candidates for developing new antipathogenic agents against bacterial infections with few side effects.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes