Harnessing Bacteriophages for Sustainable Crop Protection in the Face of Climate Change

IF 5.7 2区 生物学 Microbial Biotechnology Pub Date : 2025-02-12 DOI:10.1111/1751-7915.70108
Robert Czajkowski, Amalia Roca, Miguel A. Matilla
{"title":"Harnessing Bacteriophages for Sustainable Crop Protection in the Face of Climate Change","authors":"Robert Czajkowski,&nbsp;Amalia Roca,&nbsp;Miguel A. Matilla","doi":"10.1111/1751-7915.70108","DOIUrl":null,"url":null,"abstract":"<p>Crop pathogens represent a major challenge to global food security, causing over 40% yield losses in key crops and annual economic impacts estimated at up to US$290 billion. Microbial-based alternatives to synthetic agrochemicals offer sustainable solutions aligned with global initiatives like the European Union's Green Deal. Among these, bacteriophage (phage) therapy has gained attention for its specificity, effectiveness against plant pathogens and safety for crops. Here, we highlight recent research on phage therapy strategies and their potential utility in sustainable agriculture, showcasing its effectiveness in reducing phytopathogen densities, delaying plant disease onset, and enriching plant-associated bacterial taxa with biocontrol potential. Phage cocktails improve biocontrol, mitigate resistance, and synergize with other biological and chemical agents. Emerging technologies like engineered phages also promise enhanced efficacy. Addressing challenges like phytopathogen resistance, field inconsistencies, and regulatory hurdles is crucial to integrating phage therapy into sustainable agriculture under climate stress.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70108","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Crop pathogens represent a major challenge to global food security, causing over 40% yield losses in key crops and annual economic impacts estimated at up to US$290 billion. Microbial-based alternatives to synthetic agrochemicals offer sustainable solutions aligned with global initiatives like the European Union's Green Deal. Among these, bacteriophage (phage) therapy has gained attention for its specificity, effectiveness against plant pathogens and safety for crops. Here, we highlight recent research on phage therapy strategies and their potential utility in sustainable agriculture, showcasing its effectiveness in reducing phytopathogen densities, delaying plant disease onset, and enriching plant-associated bacterial taxa with biocontrol potential. Phage cocktails improve biocontrol, mitigate resistance, and synergize with other biological and chemical agents. Emerging technologies like engineered phages also promise enhanced efficacy. Addressing challenges like phytopathogen resistance, field inconsistencies, and regulatory hurdles is crucial to integrating phage therapy into sustainable agriculture under climate stress.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
期刊最新文献
Multifaceted Antipathogenic Activity of Two Novel Natural Products, Chermesiterpenoid B and Chermesiterpenoid B Seco Acid Methyl Ester, Against Pseudomonas aeruginosa Microbiome Literacy: Enhancing Public and Academic Understanding Through the ‘Microbiome & Health’ Online Course Production of the Sesquiterpene Bisabolene From One- and Two-Carbon Compounds in Engineered Methanosarcina acetivorans Harnessing Bacteriophages for Sustainable Crop Protection in the Face of Climate Change Impact of Oxygen Availability on the Organelle-Specific Redox Potentials and Stress in Recombinant Protein Producing Komagataella phaffii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1