{"title":"Review on efficient P3CT and P3HT HTL based perovskite solar cells.","authors":"Anjali Chandel, Po-Wen Tang, Sheng Hsiung Chang","doi":"10.1088/1361-6528/adb436","DOIUrl":null,"url":null,"abstract":"<p><p>The excellent collection ability of the photo-generated holes from the poly-crystalline lead trihalide perovskite thin films to the poly[3-(4-carboxybutyl)thiophene-2,5,-diyl] (P3CT) or poly(3-hexylthiophene) (P3HT) polymer layer has been used to realize the highly efficient solar cells. The electronic and molecular structures of the p-type polymers play the decisive roles in the photovoltaic responses of the resultant perovskite solar cells. It is fundamental to understand the relation between the material properties and the photovoltaic performance in order to achieve the highest power conversion efficiency. We review the molecular packing, morphological, optical, excitonic, and surface properties of the P3CT and P3HT polymer layers in order to correctly understand the working mechanisms of the resultant solar cells, thereby predicting the required material properties of the used p-type polymers as the efficient hole transport layer.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adb436","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The excellent collection ability of the photo-generated holes from the poly-crystalline lead trihalide perovskite thin films to the poly[3-(4-carboxybutyl)thiophene-2,5,-diyl] (P3CT) or poly(3-hexylthiophene) (P3HT) polymer layer has been used to realize the highly efficient solar cells. The electronic and molecular structures of the p-type polymers play the decisive roles in the photovoltaic responses of the resultant perovskite solar cells. It is fundamental to understand the relation between the material properties and the photovoltaic performance in order to achieve the highest power conversion efficiency. We review the molecular packing, morphological, optical, excitonic, and surface properties of the P3CT and P3HT polymer layers in order to correctly understand the working mechanisms of the resultant solar cells, thereby predicting the required material properties of the used p-type polymers as the efficient hole transport layer.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.