Optimal control of species augmentation in a competition model

IF 1.9 4区 数学 Q2 BIOLOGY Mathematical Biosciences Pub Date : 2025-02-08 DOI:10.1016/j.mbs.2025.109394
Munkaila Dasumani , Suzanne Lenhart , Gladys K. Onyambu , Stephen E. Moore
{"title":"Optimal control of species augmentation in a competition model","authors":"Munkaila Dasumani ,&nbsp;Suzanne Lenhart ,&nbsp;Gladys K. Onyambu ,&nbsp;Stephen E. Moore","doi":"10.1016/j.mbs.2025.109394","DOIUrl":null,"url":null,"abstract":"<div><div>Mathematical models of endangered competitive interactions incorporating the Allee effect with augmentation strategies have not been studied extensively. This area is however critical to ecologists since it relates to ways species can become endangered and possibly go extinct due to competition for limited resources. More importantly, the climatic change with its adverse effects has not only affected green forests but has also caused the extinction of some species. Thus, there is a need for critical augmentation strategies to safeguard such species. This paper, therefore, presents an optimal control strategy for a continuous time competition interaction model with strong Allee effects. We seek to maximize the target species at the end of each final time. We consider two objective functionals involving the populations and the cost of the controls. Using Pontryagin’s Maximum Principle, we obtain the optimal control characterizations. We perform numerical simulations using the forward–backward sweep method and the approximate solutions are presented and discussed. Since there is a cost involved in the translocation of the reserve species, we adopt a minimization cost strategy. In addition, we compute the objective functional values for each simulation.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"381 ","pages":"Article 109394"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425000203","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical models of endangered competitive interactions incorporating the Allee effect with augmentation strategies have not been studied extensively. This area is however critical to ecologists since it relates to ways species can become endangered and possibly go extinct due to competition for limited resources. More importantly, the climatic change with its adverse effects has not only affected green forests but has also caused the extinction of some species. Thus, there is a need for critical augmentation strategies to safeguard such species. This paper, therefore, presents an optimal control strategy for a continuous time competition interaction model with strong Allee effects. We seek to maximize the target species at the end of each final time. We consider two objective functionals involving the populations and the cost of the controls. Using Pontryagin’s Maximum Principle, we obtain the optimal control characterizations. We perform numerical simulations using the forward–backward sweep method and the approximate solutions are presented and discussed. Since there is a cost involved in the translocation of the reserve species, we adopt a minimization cost strategy. In addition, we compute the objective functional values for each simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
期刊最新文献
Equilibrium analysis of discrete stochastic population models with gamma distribution Optimal control of species augmentation in a competition model Unraveling the influence of the objective functional on epidemic optimal control: Insights from the SIR model Target reproduction numbers for time-delayed population systems Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1