Sustainable multi-purpose bacterial cellulose composite for food packaging via facile successive infiltration

I-Tseng Liu, Cheng-Ying Li, Ying-Chih Liao
{"title":"Sustainable multi-purpose bacterial cellulose composite for food packaging via facile successive infiltration","authors":"I-Tseng Liu,&nbsp;Cheng-Ying Li,&nbsp;Ying-Chih Liao","doi":"10.1016/j.carpta.2025.100703","DOIUrl":null,"url":null,"abstract":"<div><div>Petroleum-based plastic packaging materials have been widely used, causing severe environmental impacts. To address this challenge, there is an urgent need to develop biodegradable materials that offer strong mechanical and excellent barrier properties while ensuring food safety. In this study, sustainable, high-performance film derived from bacterial cellulose (BC) through a straightforward and eco-friendly water-based successive infiltration process is developed. To enhance the transparency and haze of BC specimens for better visual detection, waterborne polyurethane (WPU) is infiltrated for refractive index compensation and serves as an adhesive. Subsequently, the mechanical strength and water resistance of the BC/WPU films are improved by incorporating a seaweed extract, sodium alginate (SA), and metal ion chelation (Ca<sup>2+</sup>, Al<sup>3+</sup>, and Zr<sup>4+</sup>). The resulting BC/WPU/[email protected] film exhibited low hygroscopicity (+53.5 % after 190 h of immersion), high transparency (90.01 %) and excellent haze (10.91 %), exceptional tensile strength (82.8 MPa) and modulus (6.96 GPa), low gas permeability (OP = 0.0137 mL-mm/m²-day-atm and WVP = 8.75 g-mm/m²-day-atm), high biodegradability (85.23 % weight loss in 49 days), high flexibility, formability, and great heat sealability. These outstanding features make the BC/WPU/[email protected] film exceptionally well-suited for advanced and versatile packaging applications. Several examples were also demonstrated to show its exceptional potential for packaging applications.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"9 ","pages":"Article 100703"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893925000428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Petroleum-based plastic packaging materials have been widely used, causing severe environmental impacts. To address this challenge, there is an urgent need to develop biodegradable materials that offer strong mechanical and excellent barrier properties while ensuring food safety. In this study, sustainable, high-performance film derived from bacterial cellulose (BC) through a straightforward and eco-friendly water-based successive infiltration process is developed. To enhance the transparency and haze of BC specimens for better visual detection, waterborne polyurethane (WPU) is infiltrated for refractive index compensation and serves as an adhesive. Subsequently, the mechanical strength and water resistance of the BC/WPU films are improved by incorporating a seaweed extract, sodium alginate (SA), and metal ion chelation (Ca2+, Al3+, and Zr4+). The resulting BC/WPU/[email protected] film exhibited low hygroscopicity (+53.5 % after 190 h of immersion), high transparency (90.01 %) and excellent haze (10.91 %), exceptional tensile strength (82.8 MPa) and modulus (6.96 GPa), low gas permeability (OP = 0.0137 mL-mm/m²-day-atm and WVP = 8.75 g-mm/m²-day-atm), high biodegradability (85.23 % weight loss in 49 days), high flexibility, formability, and great heat sealability. These outstanding features make the BC/WPU/[email protected] film exceptionally well-suited for advanced and versatile packaging applications. Several examples were also demonstrated to show its exceptional potential for packaging applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
5-Fluorouracil-β-Cyclodextrin conjugates:Linker strategies to enhance the anticancer efficacy and reduce the side effects Amine modified sodium alginate: Synthesis, characterization and in vivo evaluation in rainbow trout (Oncorhynchus mykiss) Conductive supramolecular acrylate hydrogels enabled by quaternized chitosan ionic crosslinking for high-fidelity 3D printing Sustainable multi-purpose bacterial cellulose composite for food packaging via facile successive infiltration Dual targeting of breast cancer by chitosan/poly lactic-co-glycolic acid nanodelivery systems: Surface activation with folic acid/aptamers, and co-encapsulated with Sorafenib and quercetin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1