Rapid discrimination of different primary processing Arabica coffee beans using FT-IR and machine learning

IF 7 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food Research International Pub Date : 2025-02-10 DOI:10.1016/j.foodres.2025.115979
Zelin Li , Ziqi Gao , Chao Li , Jing Yan , Yifan Hu , Fangyu Fan , Zhirui Niu , Xiuwei Liu , Jiashun Gong , Hao Tian
{"title":"Rapid discrimination of different primary processing Arabica coffee beans using FT-IR and machine learning","authors":"Zelin Li ,&nbsp;Ziqi Gao ,&nbsp;Chao Li ,&nbsp;Jing Yan ,&nbsp;Yifan Hu ,&nbsp;Fangyu Fan ,&nbsp;Zhirui Niu ,&nbsp;Xiuwei Liu ,&nbsp;Jiashun Gong ,&nbsp;Hao Tian","doi":"10.1016/j.foodres.2025.115979","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, fourier transform infrared spectroscopy (FT-IR) analysis was combined with machine learning, while various analytical techniques such as colorimetry, low-field nuclear magnetic resonance spectroscopy, scanning electron microscope, two-dimensional correlation spectroscopy (2D-COS), and multivariate statistical analysis were employed to rapidly distinguish and compare three different primary processed Arabica coffee beans. The results showed that the sun-exposed processed beans (SPB) exhibited the highest total color difference value and the largest pore size. Meanwhile, the wet-processed beans (WPB) retained the most bound and immobilized water in green and roast coffee beans. The FT-IR data analysis results indicated that the functional group composition was similar across the three different primary processed coffee beans, while significant differences in structural characteristics were observed in 2D-COS. The multivariate statistical analysis demonstrated that the orthogonal partial least squares-discriminant analysis model could effectively distinguish the different types of coffee beans. The machine learning results indicated that the six models could rapidly identify different samples of primary processed coffee beans. Notably, the SNV-Voting model demonstrated superior predictive performance, with an average precision, recall, and F1-score of 88.67%, 88.67%, and 0.88 for three primary processing coffee beans, respectively.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"205 ","pages":"Article 115979"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925003163","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, fourier transform infrared spectroscopy (FT-IR) analysis was combined with machine learning, while various analytical techniques such as colorimetry, low-field nuclear magnetic resonance spectroscopy, scanning electron microscope, two-dimensional correlation spectroscopy (2D-COS), and multivariate statistical analysis were employed to rapidly distinguish and compare three different primary processed Arabica coffee beans. The results showed that the sun-exposed processed beans (SPB) exhibited the highest total color difference value and the largest pore size. Meanwhile, the wet-processed beans (WPB) retained the most bound and immobilized water in green and roast coffee beans. The FT-IR data analysis results indicated that the functional group composition was similar across the three different primary processed coffee beans, while significant differences in structural characteristics were observed in 2D-COS. The multivariate statistical analysis demonstrated that the orthogonal partial least squares-discriminant analysis model could effectively distinguish the different types of coffee beans. The machine learning results indicated that the six models could rapidly identify different samples of primary processed coffee beans. Notably, the SNV-Voting model demonstrated superior predictive performance, with an average precision, recall, and F1-score of 88.67%, 88.67%, and 0.88 for three primary processing coffee beans, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Research International
Food Research International 工程技术-食品科技
CiteScore
12.50
自引率
7.40%
发文量
1183
审稿时长
79 days
期刊介绍: Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.
期刊最新文献
Integrative transcriptomic and HS-SPME-GC-MS analysis reveals the influence mechanism of different altitude ecotypes on pulp aroma components and volatile metabolites in strawberry hybrid F1 and its parents Corrigendum to “Decoding microbiota and metabolite transformation in inoculated fermented suansun using metagenomics, GC-MS, non-targeted metabolomics, and metatranscriptomics: Impacts of different Lactobacillus plantarum strains” [Food Res. Int. 203 (2025) 115847] Selective extraction of zearalenone from corn steep liquor for raw material of standard substance using polyamide membrane Analysis of volatiles and α-dicarbonyl compounds in Maillard reaction products derived from 2′-fucosyllactose and amino acids Rapid discrimination of different primary processing Arabica coffee beans using FT-IR and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1