{"title":"Quantum Fisher information for a nanowire system with Rashba interaction under intrinsic damping","authors":"Rabie I. Mohamed , Manal G. Eldin","doi":"10.1016/j.physe.2025.116197","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate how quantum Fisher information behaves in a nanowire system influenced by Rashba interaction alongside an external magnetic field. The evaluation of estimation accuracy based on quantum Fisher information is conducted by initially establishing the system in both correlated and uncorrelated configurations by varying several parameters, including the magnetic field, the Rashba interaction strength, the intrinsic damping, the coupling constant, the detuning parameter, and the weight phase angle. According to our results, any changes to these parameters will affect the quantum Fisher information’s maximum values and oscillation number. Additionally, the intrinsic damping’s initial values have a significant influence over the occurrences of abrupt changes, progressively disappearing, and freezing of the quantum Fisher information. This creates new perspectives for the development of nanowire systems with potential future applications in the fields of quantum estimation and quantum information.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"169 ","pages":"Article 116197"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000220","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate how quantum Fisher information behaves in a nanowire system influenced by Rashba interaction alongside an external magnetic field. The evaluation of estimation accuracy based on quantum Fisher information is conducted by initially establishing the system in both correlated and uncorrelated configurations by varying several parameters, including the magnetic field, the Rashba interaction strength, the intrinsic damping, the coupling constant, the detuning parameter, and the weight phase angle. According to our results, any changes to these parameters will affect the quantum Fisher information’s maximum values and oscillation number. Additionally, the intrinsic damping’s initial values have a significant influence over the occurrences of abrupt changes, progressively disappearing, and freezing of the quantum Fisher information. This creates new perspectives for the development of nanowire systems with potential future applications in the fields of quantum estimation and quantum information.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures